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PEEFACE TO THE FIEST EDITION

These introductory chapters in the Infinitesimal Calculus were

lithographed and issued to the students of the First Year in

Science and Engineering of the University of Sydney at the

beginning of last session. They form an outline of, and were

meant to be used in conjunction with, the course on The Elements

of Analytical Geometry and the Infinitesimal Calculus, which leads

up to a term's work on Elementary Dynamics.
The standard text-books amply suffice for the detailed study

of this subject in the second year, but the absence of any dis-

cussion of the elements and first principles suitable for the first

year work, was found to be a serious hindrance to the work of

the class. For such students a separate course on Analytical

Geometry, without the aid of the Calculus, is not necessary, and

the exclusion of the methods of the Calculus from the analytical

studj^ of the Conic Sections is quite opposed to the present

unanimous opinion on the education of the engineer. It has

been our object to present the fundamental ideas of the Calculus

in a simple manner and to illustrate them by practical examples,

and thus to enable these students to use its methods intelli-

gently and readily in their Geometrical, Dynamical, and Physical

work early in their University course. This little book is not

meant to take the place of the standard treatises on the subject,

and, for that reason, no attempt is made to do more than give

the lines of the proof of some of the later theorems. As an

introduction to these works, and as a special text-book for such

a " short course
"
as is found necessary in the engineering schools

of the Universities and in the Technical Colleges, it is hoped that

it may be of some value.

292611



vi PEEFACE

In the preparation of these pages I have examined most of

the standard treatises on the subject. To Nernst and Schonflies'

Lehrbuch der Differential- und Integral-Eechmmg, to Vivanti's

Complementi di Matematica ad uso dei Chemici e dei Naturalistic to

Lamb's Infinitesimal Calcidus, and to Gibson's Elementary Treatise

on the Calculus, I am conscious of deep obligations. I should

also add that from the two last-named books, and from those

of Lodge, Mellor, and Murray, many of the examples have been

obtained.

In conclusion, I desire to tender my thanks to my Colleagues

in the University of Sydney, Mr. A. Newham and Mr. E. M.

Moors, for assistance in reading the proof-sheets ;
to my students,

Mr. D. R. Barry and Mr. K. J. Lyons, for the verification of

the examples; also to my old teacher. Professor Jack of the

University of Glasgow, and to Mr. D. K. Picken and Mr. R. J.

T. Bell of the Mathematical Department of that L^niversity, by
whom the final proofs have been revised.

H. S. CARSLAW.

The University of Sydney,
J%me, 1905.



PREFACE TO THE SECOND EDITION

The principal change in this edition will be found in the

treatment of the exponential and logarithm. Six years ago

few students began the study of the Calculus without having

already completed a course in Algebra, including the Theory
of Infinite Series. It is now realised that in making this

demand the mathematical teacher was asking more than was

necessary. The principles underlying the Calculus, in so far

as they can be examined in such a course as this, offer little

difficulty. No more than an elementary knowledge of Algebra
and Trigonometry is required for their discussion

;
and a real

grasp of the meaning of differentiation and integration can be

obtained by very many to whom the subject of Infinite Series

would appear extremely obscure.

These altered conditions have allowed me to place the older

proofs of the theorems regarding the differentiation of e* and log x

in an Appendix, and I have introduced into the text one of the

simpler methods, in which use is made of the Logarithm Tables.

In this discussion I have followed the lines laid down by Love

in his Elements of the Differential ami Integral Calculus. However

it seemed worth while to carry the numerical work a little

further, with the help of 8-Figure and 15-Figure Tables.

The student is apt to imagine that 4-Figure and even 7-Figure

Tables give a more accurate result than they frequently afford.

The other changes that need be mentioned are the addition

of a section on Repeated Differentiation, and one on Fluid

Pressure. A number of easy examples and of graphical illus-

trations have also been inserted.

H. S. CARSLAW.

Sydney, December, 1911.
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CHAPTER I

THE ANALYTICAL GEOMETRY OF THE STRAIGHT LINE

§ 1. Cartesian Co-ordinates.

The position of a point on a plane may be fixed in different

ways. In particular it is determined if its distances from two

fixed perpendicular lines in the plane are known, the usual con-

P {^,y)

Fig. 1.

ventions with regard to sign being adopted. These two lines

Qx and Oy are called the axes of x and y \
and the lengths OM

and ON, which the perpendiculars from the point P cut off from

the axes, are called the co-ordinates of the point P and denoted

C.C. A



2. TFE AI^>ALYTICAL GEOMETEY

by X and y. OM and ON are taken positive or negative accord-

ing as they are measured along Ox and O?/, or in the opposite

directions. OM is called the "
abscissa

"
of P and MP is called

the ''m-dinate" of P.

Ex. 1. Mark on a piece of squared paper the position of the points

(±2, ±3)..

2. Prove that the distance between the points (2, 3), and (-2, -3) is

2\/l3.

3. Prove that the distance d between the points (x^, y-j), (x^, ya) ia

^ven by d2= (xi
-

X2)2 + {y,
-
y.^\

4. Prove that the co-ordinates of any point (x, y) upon the circle whose

centre is at the point (a, b) and whose radius is c satisfy the equation

(x-a)2 + (y-b)2=c2.

§ 2. The Co-ordinates of a Point dividing the Line joining two

given Points in a given Ratio 1 : m.



OF THE STRAIGHT LINE

Also draw P^HK and PL parallel to Ox.

Let these lines meet PM and P2M2 in H, K and L.

Since

we have

P,H
PL



4 THE ANALYTICAL GEOMETRY

For example, the equation of the circle with its centre at the

point {a, h) and radius c is {x- af + {y
-
hy = c^. (Cf. § 1, Ex. 4.)

The same ideas are employed in Solid Geometry : the surface

of a solid is represented by an equation satisfied by the co-

ordinates of the points lying upon it; and straight lines and

curves are given by simultaneous equations. The geometrical

properties of curves and surfaces may often be obtained by

discussing their equations. This branch of mathematics is called

Analytical Geometry.
The simplest equation in the two variables ic, y is that of the

first degree ax + hy + c = Qf,

a, h and c being constants.

For example, take the equation

a; + 2^ = 4.

By assigning any value to x and solving the

equation for y, we obtain, as in the accompany-

ing table, the co-ordinates of any number of

points upon the locus. Plotting these points

upon squared paper in the usual way, we see

that they all lie upon a straight line ; and, so

far as our measurements could be relied upon,

we could verify that the co-ordinates of any

point upon this line would satisfy the equation.

We proceed to prove that this is true in general : in other

words, that all the points whose co-ordinates satisfy the equation

ax + hy-\-c
=

lie upon one and the same straight line, and that the co-ordinates of all

points upon this straight line satisfy the equation.

(i.) We consider first of all the equation

y = mx, (1)

m being any real number.

Let P be any point whose co-ordinates x, y satisfy this equation.

(Cf. Fig. 1.)

Draw PM perpendicular to the axis of x and join OP.

Let OP make an angle 6 with the positive direction of the

axis of X.

. z)
MP y

Then tan 6 = ^, , = - = m.OM X

X
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Therefore the point P lies upon the straight line through the

origin which makes an angle whose tangent is m with the

positive direction of the axis of x.

As the number m is a given number, this line is a definite

straight line.

Now let us take any point upon this straight line and draw

the perpendicular from that point to the axis of x.

It will be seen that the co-ordinates of the point satisfy the

given equation.

It follows that every point whose co-ordinates satisfy the equation

y
= mx

lies upon a certain straight line through the origin, and that the

co-ordinates of every point upon this line satisfy the equation.

If m> 0, the line will be in the first and third quadrants.

If m= 0, the line is the axis of x, and if m= oo, the line is the axis of y.

If m < 0, the line is in the second and fourth quadrants.

(ii.) We next consider the equation

y = mx + 71, (2)

where m and n are any real numbers.

For any value of x there is one and only one value of y. This

value is greater by n than that for the corresponding point on

the straight line given hy y = mx.

Hence, to obtain all the points whose co-ordinates satisfy equation (2),

we have only to lengthen the m'dinates of all the points on the straight

^*^^
y = mx

hy an amount n.

In other words, we have only to move this whole line parallel

to itself through the distance n in the direction of the axis

of y.

Or, more simply, we have to draw the parallel through the

point (0, n) to the line y = r)ix.

lin>0, the point lies on the positive portion of the axis of y ;

if ?i< 0, it lies on the negative portion.

The co-ordinates of all points upon this line satisfy equation (2) ;

and the co-ordinates of all points which do not lie upon this line

do not satisfy equation (2).
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(iii.) Finally we consider the equation

ax + by + c = 0. (3)

If b = 0, X remains constant and the equation represents a line

parallel to the axis of y.

If b =1= 0, we can write the equation in the form

(-|)-(-|>

On putting m= - t and n^ -ji

this becomes y = mx + n,

the form we have discussed in
(ii,).

It follows that the equation

ax + by + c =

always represents a straight line.

For this reason the equation of the first degree is usually

called a linear equation.

In the above discussion we started with the equation, and found that

the locus which it represents is a straight line.

If a straight line is given, we can easily show that the co-ordinates of

any point upon it satisfy a linear equation, which can always be obtained.

If the line is parallel to the axis of x, it is clear that the ordinates of all

points upon it are the same. Its equation is thus y= const.

If it is parallel to the axis of y, its equation is a;= const.

If it makes an angle 6 with the positive direction of the axis of x, and
cuts off an intercept w from the axis of y, we have seen that its equation is

y=mx + n, where tan 6= m.

We thus speak of the equation of the given straight line, and we know
that it is always of the form

ax + by + c = 0,

where a, b and c are constants which arise in specifying the line.

§4. Drawing Straight Lines from their Equations.

In the last article we have shown that the equation of the

first degree represents a straight line. In plotting the locus

given by such an equation, we do not now need to obtain a table

of values of x and y, as we did above in the example x + 2y = 4:.

Two points fix a straight line. Therefore we have only to find

two points whose co-ordinates satisfy the equation. The most

convenient points are those where the line cuts the axes, and

these are found by putting x = and y = 0, respectively, in the

equation.
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Ex.1. Draw the lines (i.) a;= 0, x= l, x=-l;
(ii.) y= 0, y=2, y=-2;
{iii.) x + y= 0, x + y= l;

(iv.) y= 2x, y—2x + 3;

(v., M=i,
x y = h

2. Determine whether the point (2, 3) is on the line

4x + 3y=l5.

3. What is the condition that the point (a, h) should lie upon the line

ax + hy= 2ah'!

§ 5. The Gradient of a Line.

When we speak of "the gradient" of a road being 1 in 200

we usually mean that the ascent is 1 foot vertical for 200 feet

horizontal. This might also be called the slope of the road.

The same expression is used with regard to the straight line.

The "gradient" or the "slope" of a straight line is its rise per

unit horizontal distance;

or the ratio of the increase

in y to the increase in x

SiS we move along the line.

This is evidently the same

at all points of the straight

line, and is equal to the

tangent of the angle the

line makes with the axis

of X measured in the posi-

tive direction.

To save ambiguity it is

well to fix upon the angle

to be chosen, and in these

pages it will be convenient to consider the line as always drawn

upward in the direction ^ > (Fig. 3), and thus to restrict the

angle (f>
to lie between 0° and 180°. It is convenient to speak

of the line as drawn in the positive direction in such a case.

When < (^ < ^ the gradient is positive.

When ^ < </) < TT the gradient is negative.

Ex. Write down the values of <p for the lines in § 4 (i.).

Fig. 3.

k
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§ 6. Different Forms of the Eciuation of the Straight Line.

In the preceding articles we have shown that the equation

ax + by + c =

represents a straight line, and we have seen how the line may
be drawn when its equation is given. We shall now show how

to obtain the equation of the line when two points upon it are given.

Let
(x-^, y-^), (x^, y^ be the two given points. Let {x, y) be

the co-ordinates of any point upon the line. Then it is clear

(cf. Fig. 2) that

tzi is equal to the gradient of the line,

and that ^^"^^ is also equal to the gradient of the line.

Thus we have the equation

tV
i/^i tAj£) (//-I

between the co-ordinates {x, y) of the representative point and

the co-ordinates {x^, 3/i)(^2» V^) ^^ ^^^ fixed points. This is the

equation of the straight line through these points. It is more

conveniently written

x-x^ ^ y-y^ ^.
^1-^2 y^-y2

It follows from the above argument, or can be proved inde-

pendently, that

The equation of the line through {x^^ y^), making an angle </>
with

the axis of x, is

|^
= tan.^; (B>

and that

The equation of the line which cuts off a length c from the axis of y,

and is inclined at an angle whose tangent is m to the axis of x, is

y = mx + c; (C)
and that

The equation of the line which cuts off intercepts a and h from the

axis of X and y is

- + |=1. (D)ah .

^
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Ex. 1. Write down the equations of the lines through the following paira
of points: (1, 1), (1, -1); (1, 2), (-1, -2); (3, 4), (5, 6) ; {a, b), {a, -h).

2. Find the equations of the lines through the point (3, 4) with gradient
± 5, and draw the lines.

3. The lines y=:x and y^lx form two adjacent sides of a parallelogram,
the opposite angular point being (4, 5). Find the equations of the other

two sides ; and of the diagonals.

4. Write down the equations of the lines making angles 30°, 45°, 60°,

120°, 135°, and 150° with the axis of x, which cut this axis at unit distance

from the origin in the negative direction.

§7. The "Perpendicular" Form of the Equation of the

Straight Line.

A straight line is determined when the length of the perpen-
dicular upon it from the

origin, and the direction

of this perpendicular are

given.

Let ON be the perpen-

dicular, p, upon the line

Let the angle between

ON and Ox be a, this

angle lying between

and 27r (cf. Fig. 4).

Then N is the point

{'p cos a, jp sin a).
Fig. 4.

y -p sm a

x-p cos

This reduces to

Using the form (B) of § 6, the equation of the line becomes

a
,

, , / 7r\ COS a- = tan <h = tan a + ?:
= —

-.

—
.

a V 2/ sma

X COS a + ?/ sin a =p. (E)

N.B.—ThQ quantity p is to be taken always positive, and the

angle a is the angle between Ox and ON.

§ 8. The Point of Intersection of Two Straight Lines.

Since the point of intersection of the two lines

ax + by +c =0,

a'x + b'y + c=-0

lies on bpth lines, its co-ordinates x, y satisfy both equations.
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Solving the equations we have

X y 1

he' - b'c ca' - c'a ah' - a'h

It is clear that if ah' - a'h = 0,

and neither of the other two denominators vanish, the co-

ordinates X, y are infinite, and the lines are parallel.

If in addition ca' - c'a = 0,

1 a h c
we have _ =- =-

a h c

and the third denominator he' - h'c also vanishes.

In this case the two equations are not independent, and they

really represent the same straight line.

Ex. 1. Find the co-ordinates of the point of intersection of the lines

2x+ y= 4,

x + 2y= 6.

Illustrate your result by a diagram.

2. Find the equations of the lines through (2, 3) parallel to

3x±4y = 5.

3. Find the co-ordinates of the angular points of the triangle whose

sides are given by x+ y = 2, (1)

3x-2y=l, (2)

4x + 3y= 24. (3)

Also find the equations of the medians of this triangle and the co-

ordinates of its C.G.

§ 9. The Angle between Two Straight Lines whose Ecluations

are given.

When one of the lines is parallel to the axis of y, the angle
between them can be readily found.

In all the other cases the equations can be reduced to the forms

y = mx +c, (1)

y^m'x + c'. (2)

Also the angle between these lines is the same as the angle
between the lines

^^^^ ^3^

and y = m'x, (4)

which pass through the origin and are parallel to the given lines.
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Let OQ, OQ' (cf. Fig. 5) be the positive directions of the

lines (3) and (4), with gradients m and m', respectively.

Let
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fVe ham thus proved that the absolute value of

m-m'
1 + mm'

is equal to the tangent of the acute angle hetioeen the lines

y^mx +c,

y = m'x + c'.

In practice it is unnecessary either to draw the lines, or to consider

which has the greater slope. Taking the lines in any order, we need only
calculate the absolute value of the expression

m-m'
1 +mm'

'

The acute angle between the lines can then be written down.

It follows that

(i.) The lines are parallel, if m = m' ;

(ii.) The lines are perpendicular, if mm' + 1=0.

When the equations are

ax +by +c =0,

and
.

a'x + b'y + c' = 0,

ah' - a'h

aa' + hh'

is equal to the tangent of the acute angle between the lines.

the absolute value of

equal to the ta

It follows that

(i.) The lines are parallel, if
— =

t,')

(ii.)
The lines are perpendicular, if aa' -^-bh' = 0.

Ex. 1. Write down the equation of the straight line through (1, 2)

perpendicular to x-y= Q.

2. Find the angles between the lines

x-2y + \=0\
x + Zy + 2= 0J

and . 4a; + Sy
^x

and draw the lines.

3. Write down the equation of the straight line through [a, h) per-

pendicular to hx-ay= a^+ b\

4. Write down the equation of the line bisecting the line joining (1, 2),

(3, 4) at right angles, and the equations of the perpendiculars upon both

lines from the origin.

+sy=m
+ 4y=l2l
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5. Prove that l{x-a) + m{y-h) = is the equation of the line through

{a, b) parallel tolx + my= 0; and that m{x-a)-l{y -b) = is the equation of

the line through {a, b) perpendicular to Ix + my-O.
6. Write down the equations of the lines through the C.G. of the

triangle whose angular points are at (4, -5), (5, -6), (3, 1) parallel and

perpendicular to the sides.

§ 10. The Length of the Perpendicular from a Point (x^, y^)

upon a Straight Line whose Equation is given.
"^

(i.)
If the equation of

the straight line is given

in the "
perpendicular

"

form

a; cos a + y sin a =
j?, (1)

the line through Vix^, y^

parallel to it is given

by

{x
-
x^ COS a + (y

-
y^) sin a = 0,

that is, by x cos a + ?/ sin a = ^Cq
cos a + ^o ^^^^ "•

But if
j?o

is the perpendicular ON^ from O upon the line (2),

and if N, Nq are on the same side of 0, the equation of PNq may-

be written x cos a + ^ sin a =p^ .

Since
(a^^, y^ lies upon PNq, we have

«Q cos a + ?/o
sin a =^Q .

Also the perpendicular from ^{x^, yo) upon the line (1) is

*ONo-ON, (cf. Fig. 6)

i.e. Pq -p,

i.e. Xq cos a + y^ sin a -p.

In the case when Nq lies between O and N, we have to take

and when N, N^ lie on opposite sides of 0, ONq makes an angle

{a + tt) with Ox, and we have to take

*This section, and the examples in which it is required, may be omitted by
those who only require such a knowledge of analytical geometry as is necessary

for the pages of this book referring to the Calculus.
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In both these cases the length of the perpendicular is given by
-
Xq cos a - y^ sin a +p.

(ii.) If the equation of the line is given as

ax + hy = c (c> 0), (1)

we have first to throw this into the "perpendicular" form.

Suppose it becomes

X cos a + ^ sin a =p. (2)

Then, by equating the values we find from these two equa-

tions for the intercepts upon the axes, we obtain
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side of the line from the origin, the negative sign when it is on

the same side of the line as the origin."^

This result holds for the equation of the straight line, in

whatever form it is given. The reason for the change of sign

in the expression for the length of the perpendicular is that the

line lx-\-mp + n = divides the plane of xy into two parts. In

one of these the expression Ix + my + n is positive ;
and in the

other it is negative. Upon the line the expression vanishes.

Ex. 1. Transform the equations

{i.) Sx±4y=^5, {u.)Sx±4y=~5
into the perpendicular form, and write down the vahie of a for each with

the help of the Trigonometrical Tables.

2. Write down the length of the perpendicular from the origin upon
the line joining (2, 3), (6, 7). / , "^

3. Write down the length of the perpendicular from the point (2, 3)

upon the lines 4x + 3y= 7, 5x + 12y= 20, 3x + 4:y
= S.

4. Find the inscribed and escribed centres of the triangle whose sides

are 3x + 4y=0, 5x-l2y=^0, y= l5,

and the equations of the internal and external bisectors of the angles of

this triangle, distinguishing the different lines.

[A fuller discussion of the subject matter of this chapter is given in

such books on Analytical Geometry as (i. ) Briggs and Bryan's Elements of

Co-ordinate Geometry, Part I.
, Chapters i. -x. ; (ii. ) Loney's Co-ordinate

Geometry, Chapters i.-vi. ; (iii.) C. Smith's Elejiientary Treatise on

Conic Sections, Chapters i. and ii. ; and (iv.) Gibson and Pinkerton's

Elements of Analytical Geometry, Chapters i.-v.

In all these books a large number of examples will be found illustrating

the points we have discussed.]

EXAMPLES ON CHAPTER I

1. Find the equation of the locus of the point P which moves so that

(i.) AP2 + PB2= c2

(ii.) AP2-PB2= c^

(iii.) AP.PB = c2,

A and B being the points (
-

a, 0), (a, 0).

* Rule.—To find the length of the perpendicular from a given point (xo, 2/o)

upon a given straight line ^^ + ^^^Z+ n= 0,

insert the values [x^, ?/o) in place of {x, y) in the linear expression and divide by
the square root of the sum of the squares of the coefficients of x and y in this

expression. The absolute value of

IxQ+myo + n

is the length of the perpendicular.
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2. Find the equation of the straight line through (
-

1, 3), (3, 2), and
show that it passes through (11, 0).

3. Show that the lines Sx- 2i/ + 7 =

4x+ 2/ + 3 =

iar + 13y =0
-all pass through one point, and find its co-ordinates.

4. Find the equations of the lines through the origin parallel and per-

pendicular to the lines of Ex. 3 ; also those through the point (2, 2).

5. Find the equation of the line joining the feet of the perpendiculars
from the origin upon the lines

4x+ y=\l
a: -f- 2?/

—
5.

• 6. Draw the lines 4:y + 2x = \2

3y + 4x = 24.

Find the equations of the bisectors of the angles between them, dis-

tinguishing the two lines.

7. The sides of a triangle are

X- y+ \=0

x-4y+ 7 =

x + 2y-\l^0.
Find (i.) the co-ordinates of its angular points,

(ii. )
the tangents of its angles,

(iii.) the equations of the internal and external bisectors of these

angles.

8. The angular points of a triangle are at (0, 0), (2, 4), (
-

6, 8). Find

(i.) the equations of the sides,

(ii. )
the tangents of the angles,

(iii.) the equations of the medians,

(iv.) the equations and lengths of the perpendiculars from the

angular points on the opposite sides,

(v. )
the equations of the lines through the angular points parallel

to the opposite sides,

(vi.) the co-ordinates of the C.G.,

(vii.) the co-ordinates of the centres of the inscribed, circumscribed

and nine-points circles.

9. Prove that the area of a triangle whose angular points are the origin,

{x-^, 2/i) and (a^a, 3/2)5 i^ equal to the absolute value of ^i2/2-.V2^i .
g^^^j

find the corresponding expression for the area when the angular points
are {x^, y^), {xo, y.^) and (^3, y.^.

10. Find the areas of the triangles given in Exs. 7 and 8.



CHAPTER II

THE MEANING OF DIFFERENTIATION

§11. The Idea of a Function.

If two variable quantities are related to one another in such

a way that to each value of the one corresponds a definite

value of the other, the one is said to be a function of the other.

The variables being x and ?/, we express this by the equation

y=f{x). In this case x and y are called the independeilt and

dependent variables respectively. Analytical Greometry furnishes

us with a representation of such functions of great use in the

experimental sciences. The variables are taken as the co-

ordinates of a point, and the curve, whose equation is

gives us a picture of the way in which the variables change.

In these chapters we shall assume that the equation y=f(x)

gives us a curve. There are, however, some peculiar functions

which cannot thus be represented.

§ 12. Examples from Physics and Dynamics.

If a quantity of a perfect gas is contained in a cylinder

closed by a piston, the volume of the gas will alter with the

pressure upon the piston. Boyle's Law expresses the relation-

ship between the pressure p upon unit area of the piston,

and the volume v of the gas, when the temperature remains

unaltered. This law is given by the equation

where p^, Vq are two corresponding values of the pressure and

c.c. B
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the volume. When the volume v for unit pressure is unity^

this equation becomes

and the rectangular hyperbola, whose equation is

will show more clearly than any table of numerical values of p
and V the way in which these quantities change.
When the pressure is increased past a certain point Boyle's

Law ceases to hold, and the relation between p and v in such a

case is given by van der Waals's equation :—

(^
+
^)(^-^)

=
^'

a, h and c being certain positive quantities which have been

approximately determined by experiment for different gases.

Inserting the values of a, h and c for the gas under consideration,

and drawing the curve

(^
+
^)(^-^^)

=
^'

with suitable scales for x and y, the way in which p and v vary
is made evident.

Such illustrations could be indefinitely multiplied. We add

only two, taken from the case of the motion of a particle in

a straight line.

When the velocity is constant, the distance s from a fixed point
in the line to the position of the particle at time t is given by

S = Vt + SQ,

where s^ is the distance to the initial position of the particle,,

and V is the constant velocity.

The straight line s — vt + Sq

represents the relation between s and /, the co-ordinates now

being referred to axes of s and t.

When the acceleration is constant, the corresponding equation is

s=yt^ + v^t+SQ,

where /= the acceleration,

t^Q
= the initial velocity

and Sq
= the distance to the initial position.
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In this case we have the parabola

in the s, ^ diagram.
Also in both these cases we might obtain an approximate value

of s for a given value of t, or an approximate value of t for a

given value of s, by simple measurements in the figures repre-

senting the respective curves.

§ 13. The Fundamental Problem of the Differential Calculus.

The aim of the Differential Calculus is the investigation of'

the rate at which one variable quantity changes with regard to

another, when the change in the one depends upon the change

in the other, and 'the magnitudes vary in a continuous manner.

Of course there are also cases in which the variable we are

examining depends upon more than one variable. However, to

such cases only a passing reference can be made in this book. ^
The element of time does not necessarily enter into the idea of")

a rate, and we may be concerned with the rate at which the

pressure of a gas changes with the \'olume, or the length of a

metal rod with the temperature, or the temperature of a con-

ducting wire with the strength of the electric current along it,

or the boiling point of a liquid with the barometric pressure, or

the velocity of a wave with the density of the medium, or the

cost of production of an article with the number produced, etc^
etc. The simplest cases of rates of change are, however, those in

which time does enter, and we shall begin our consideration of

the subject with such examples.

§ 14. Eectilinear Motion.

In elementary dynamics the velocity of a point, which is i

moving uniformly, is defined as its rate of change of position,

and this is equal to the quotient obtained by dividing the

distance traversed in any period by the duration of the period,

the distance being expressed in terms of a unit of length, and

the period in terms of some unit of time.

When equal distances are covered in equal times this fraction

is a perfectly definite one and does not depend upon the time,

but when the rate of change of position is gradually altering,

as, for instance, in the case of a body falling under gravity, the
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value of such a fraction alters with the length of the time con-

sidered. If, however, we note the distance travelled in different

intervals measured from the time /, such intervals being taken

smaller and smaller, we find that the values we obtain for what we

might call the average velocity in these intervals are getting
nearer and nearer to a definite quantity.

For example, in the case of a body falling from rest the

distance fallen and the time are connected by the follo\\'ing

equation, s =
lgt'^.

Let us fix upon a certain time t and the distance s which

corresponds to that time.

Let (s + hs) be the distance which corresponds to the time {t + U).

These quantities Ss and U added to s and t are called the

"increments" of these variables."^

Then s-\-Ss = \g{t-\- Uf =
hgf^ + gt (St) + ^g {8t)l

Ss
Therefore

^/
^

^^ + i^ (^^)'

Now let t be kept fixed, but let the increment St get smaller

and smaller.

It is clear that as 8t tends to zero, the average velocity

gt + hg{8t\

for the interval ^ to (^ + U), approaches nearer and nearer to the

value gt.

This value towards which the average velocity tends as the

interval diminishes is called the velocity at the instant t, on the

understanding that we can get an "average velocity" as near

this as we please by taking the interval sufficiently small.

The actual motion with these average velocities in the successive

intervals would be a closer and closer approximation to the con-

tinually changing motion in proportion to the minuteness of the

subdivisions of the time. The advantage of the method of the

Differential Calculus is that it gives us a means of getting
these "instantaneous velocities," or rates of change, at the time

considered. When the mathematical formula connecting the

* When these
*
^increments'' are small, it is convenient to speak of them as "

the

little piece added to s
" and "

the little piece added to t." It has to be noticed that

the symbols ds and 5t have to be taken as a whole. The beginner is apt to look upon
Ss as dxs, when he uses it in an algebraical expression.
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quantities is given, we can state what the rate of change of

the one is with regard to the other, without being dependent

upon an approximation obtained by a set of observations in

gradually diminishing intervals.

§ 15. Limits. Differential Coefficient. —^
If a variable which changes according to some law can be

made to approach some fixed constant value as nearly as we please,

but can never become exactly equal to it, the constant is calledj

the limit of the variable under these circumstances. Now if

this variable is x, and the limiting value of x is a, the dependent
variable y (where y=f{x)) may become more and more nearly

equal to some fixed constant value J as x tends to its limit a,

and we may be able to make y differ from h by as little as we

please, by making x get nearer and nearer to a. In this case

h is called the limit of the function as x approaches its limit a, or

more shortly, the limit of the function for x = a.

As the variable x is only supposed gradually to tend towards

the value a, without actually attaining that value, it is better to

write this in the form
j^^ iy\ ^ j

rather than in the form

Lt {y)^h.

In this way we emphasize the fact that it is not the value of y

for X equal to a with which we are dealing. What we are

concerned with is the limiting value of ?/ as a; converges to a as

its limit.

Ex. (i.) If 2/=^'
Lt(2/)-l.

(ii.) If y^xlogioX,

Lt(y) = 0.

(iii.) If
2/
= i,

Lt (y)
= 00

,

X—>0

or, more correctly, y has no limit as x tends to zero.*

* For a fuller elementary discussion of the idea of a limit, see Love's Elements

of the Differential and Integral Calculus, Ch. II., §§ 19, 20 and Appendix.
The subject is also discussed in such standard text-books as Lamb's, Gibson's,

and Osgood's.
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In this last example the function increases without limit as -x

approaches its limit. We might have the corresponding case

of X increasing without limit and the function having a definite

limit : e.g. if
y^^. ^^ere < a< 1,

Lt {y)
= 0.

This idea of a limit has already (§ 14) been employed, and

when s = ^gf, the velocity at the time t of the moving point is

what we now denote by the symbol

In the general case, when the relation between s and t is

s=f(^t), we take the distance at the time {t + 8t) as (s + Ss).

Then we have s + 8s =f{t + 8t)

and • ^s_f(t + 8t)-f{t)
^

8t 8t

Hence the velocity at the time t is given by

St-^o\^i 'A 8t /•

The limiting value of the ratio of the increment of s to the

increment of t, as the increment of t approaches zero, is called the

differential coefficient of s with regard to t. Instead of wi'iting

Lt (^\ we use the symbol -y- for this limiting value.

st-^\otJ dt

It must, however, he carefully noticed that in this symbol ds and dt

cannot, so far as we are here concerned, he taken separately, and that

— stands for the result of a definite mathematical operation, namely,

the evaluation of the limiting value of the ratio of the corresponding

increments of s and t, as the increment of t converges to zero.^

We shall see later, in § 38, that there is another notation in

which ds and dt are spoken of as separate quantities, but until

that section is reached, it will be well always to think of the

differential coefficient as the result of the operation we have just

described.

*For this and other reasons we shall often write -nf{t), instead of ^^ .

This is also written f'{t).
^^ **



THE MEANING OF DIFFERENTIATION 23

It is clear that if 8t is very small, the corresponding increment

ds
of

.9, namely Ss, will be very approximately given by —8t. Still
dt

it is not a true statement, but only an approximation, to say

that in this case ^g
8s = .7 St.

dt

However, this approximation is very important. It may be

employed in finding the change in the dependent variable due

to a small change in the independent variable, or the error in the

evaluation of a function due to a small error in the determination

of the variable, provided we know the differential coefficient

of the function.

We add some examples in which the differential coefficients

are to be obtained from the above definition, viz.—

If s =

Ex. 1. If s=at + b

2. If s= at'^ + 2ht-hc

3. If d=ut,

4. If y =mx + n

5. If y= ax'^,

§ 16. Geometrical Illustration of the Meaning of the Diflfer-

€ntial Coefficient.

The gradient, or slope, of a straight line has been defined

in §5. The gradient of a curve at any point is the gradient

of the tangent at that point.

We obtain another illustration of the meaning of the differ-

ential coefficient by considering the gradient, or slope, of the

<5urve
y=f{x).

Let P be a certain point (ic, ?/),
which we suppose fixed.

Let Q be another point, its co-ordinates being denoted by

{z + 8x,y + 8y).

^')' 'h^.
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Let the tangent at P make an angle <^ with Ox.

Then, in Fig. 7,
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Writing f{p:) for the differential coefficient of f{x), and /'(^o)

for the value of f'{x) when x has the value x^^ this equation

becomes
2/
"
^o
=

(^
"
^o)/W-

Ex. Find the vahie of -^ at the point (2, 1) on the parabola ^y = x^y

and show that the equation of the tangent at that point is

x-y=l. [Cp. p. 83.]

§17. Approximate Graphical Determination of the Differ-

ential Coeificient.

When the equation connecting x and y is such that the curve

may be easily drawn, the slopes of the various positions of the

secant PQ, as Q is made to move nearer and nearer to P, will

give a series of values more and more nearly approximating to

(lij

the value of
-j-

at that point. An instructive example is the

case of the curve ^j
=

x^,

8y
in which the following table of values of 8x, 8y and ^ can readily

8y
^

be obtained. The way in which ^ approaches its limiting-

value 2 at the point where a; = 1 is evident.

6x

Sx
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dynamical illustration of a rate of change. Then we used the

relation y=f{x), and found that the differential coefficient of y

with regard to x was the slope of the curve y =f(x) at the point

{x, y). We shall use this geometrical notation most frequently,

since one of the best introductions to the Calculus is through its

applications in Analytical Geometry.

The differential coefficient -/, or f'(x), is itself a function of x,

and we may differentiate this function. Its differential coefficient

is written -—, or f'''{x),
and is called "the second differential

coefficient
"
of y, or of f(x).

This process may be repeated indefinitely. The differential

coefficient of the second differential coefficient being called the

third differential coefficient, and being written J, or f"{x), etc.
7 cix

From this point of view
-f-,

or f'(x), is called "the first
cix

differential coefficient."

Consider the case y = mx + n.

We know from Chapter I. that this is the equation of a

straight line of gradient m.

Therefore we have 3- = ^•
ax

Also as the gradient m is the same for all values of x, its rate

of change is zero.

Therefore cW^^'

Again take the case y = x'^.

We have already seen how to differentiate such a function

(cf. §§ 14, 15) proceeding from the definition of the differential

coefficient. Later we shall obtain a rule, which will enable us to

write down the answer immediately.

With the method already employed, we begin with the value

x, and we have
y ^ ^2^

Then we take Sx for the increment of x, and we write 8y for

the corresponding increment of y.

Therefore we have y + Sy = {x + Sx)^.
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From these two equations it follows that

Bx
= 2x + {8x).

Lt
.(2)-"

Thus
dx
= 2x.

To find the second differential coefficient, we have to differ-

entiate the expression for
-^.

In this case we find at once by calculation, or from our

knowledge of the graph of 2x, that

From Fig. 8, it is obvious that, when
-^

is positive, the tangent is
ax

inclined at an acute angle to the axis of x : that, when it is negative,

this angle is oMuse. A positive -j-
means that y increases with x at

dy
that point: a negative -^ means that y diminishes as x increases.

dv
When

-j- vanishes, the tangent must be parallel to the axis of x.

Let us imagine the curve ABC... to stand for a road, and that

a traveller is marching along it in the positive direction of the
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axis of X, which is horizontal. When the traveller ascends,

- is positive : when he descends, -^ is negative ;
and if the

dx dx

road is rounded off and no sudden changes of gradient occur,

when he ceases to ascend and begins to descend, or the reverse,

-^ changes sign by passing through zero. [See also p. 71.]

What infoi'mation can we obtain from the second differential

coefficient of y regarding the curve y =f{x) ?

We have seen that J stands for the rate of change of the
ax'^

gradient. It follows that along the parts of the curve where

the gradient is increasing, -^ is positive. Also that along the
ax

parts of the curve where the gradient is diminishing, J is

five.
'^'^

.^.>o

Fig. 9.

This can also be put in the following way :
—
^ is positive^

ax

when the curve y=f(x) is concave upwards; that is, concave,

when looked at from above. Also ~ is negative, when the curve
ax

is convex upwards ;
that is, convex, when looked at from above.

The second differential coefficient has also an impmiant applicatioih

in Dynamics.
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The acceleration of a moving point is defined as its rate of

change of velocity.

Let us return to the case of the motion of a point along a

straight line, in which the distance and the time are connected

by the relation s = f(t).

Let the velocity at the time t be ^^

Then we know that '^ =
77 =/'(0'

Also the acceleration at the time t is the rate of change of the

velocity at that time.

Thus the acceleration = —
dt

E.g. If
•

s = \gt\

ds

d^s
and the acceleration =

-j-z=g,
cct

Again, when the velocity is increasing, the acceleration is

positive ;
when the velocity is decreasing, the acceleration is

negative. ... d^s
Therefore the sign of the second differential coefficient,

-j-^,

tells us whether the velocity is increasing or decreasing at the

instant considered. We shall return to this question later, and
d^s

we shall see that when the second differential coefficient -^

vanishes for a certain value of t, and is positive just before that

value of t, and negative just after it, then at that particular

instant the velocity has a maximum value. Also that when

the change of sign is from negative to positive, the velocity

has a minimum value at that time. [Cf. § 38.]

EXAMPLES ON CHAPTER II

The differential coefficients required in the examples on this chapter are

to be obtained from the definition.

1. Plot the curves (i.) y = x + x^ (ii.) y= ofi,

and show that they have the same gradient when x=l.
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2. By considering the area of a square and the volume of a cube, show-

that the differential coefficients of x'^ and x^ are 2x and Zx"^ respectively.

3. Show that the curves y= x^ and y= x^ intersect at the origin and

the points (1, 1), (-1, 1), and that at each of the two latter points the

angle between the tangents is tan"^ -.
y

4. Show that the gradient of the curve y = x^ - Zx at the point where

x= 2 is 9. Find the equation of the tangent there and trace the curve.

5. Find where the ordinate of the curve y= Zx-4x'^ increases at the

same rate as the abscissa, and where it decreases five times as fast as the

abscissa increases.

6. If 8= nt-\gt'^, find the values of the velocity and acceleration at

the time t.

7. A cylinder has a height h ins. and a radius r ins. ; there is a possible

small error br in r. Find an approximate value of the possible error in

the computed volume.

8. Find approximately the error made in the volume of a sphere by
making a small error 5r in the radius r. The radius is said to be 20 ins. ;

give approximate values of the errors made in the computed surface and
volume if there be an error of "1 in. in the length assigned to the radius.

9. The area of a circular plate is expanding by heat. When the radius

passes through the value 2 ins. it is increasing at the rate of -01 in. per sec.

Show that the area is increasing at the rate of "04^ sq. in. per sec. at that

time.

10. The length of a bar at temperature 0° is unity. At temperature f
its length I is given by the equation

l^l+at + W^',

find the rate at which the bar increases in length at temperature f, and

give an approximation to the increase in length due to a small rise in

temperature,

11. If the diameter of a spherical soap-bubble increases uniformly at

the rate of '1 centimetre per second, show that the volume is increasing
at the rate of '2ir cub. cent, per second when the diameter becomes
2 centimetres.

12. A ladder 24 feet long is leaning against a vertical wall. The foot

of the ladder is moved away from the wall, along the horizontal surface of

the ground and in a direction at right angles to the wall, at a uniform

rate of 1 foot per second. Find the rate at which the top of the ladder is

descending on the wall, when the foot is 12 feet from the wall.



CHAPTER III

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS; AND SOME

GENERAL THEOREMS ON DIFFERENTIATION

§ 19. The Differentiation of x^ when n is a Positive Integer.

We have already seen that,

when y = x'^,

dx

A similar argument would show us that,

when y = x^,

and that, when

ax

dx

These suggest that

when y = x^,

dy
nxn-l

dx

As a matter of fact this formula is true, when n is any number

independent of x. However we shall prove it, at present, only

for the case oi n a positive integer. The cases when the index of

the power of ic is a fraction or negative we shall examine later."^

* In the first edition of this book the usual proof of this theorem is given,

the Binomial Theorem for any index being employed. The student, who under-

stands the use of Infinite Series, will probably prefer that proof, but it seems

better to give those who have not read that difficult portion of Algebra, or have

not properly understood it, an alternative method. Similar changes are made
in the discussion of the differentiation of the exponential and logarithmic

functions, and our subject is developed without the use of the Theory of Infinite

Series at all. The proofs referred to are given in the Appendix (p. 129).
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As usual, we begin with the value x^ and we put

y = %\ (1)

Then we take the increment ^x of x^ and we write hj for the

corresponding increment of y.

It follows that y +^ = {x^ Sxf.

Now we know from Elementary Algebra that

{a + hf = ft" + na^-' b +^-^) ^-2^2 +

when 71 is a positive integer.

Therefore we have

+ 5",

y^^ = x^ + nx^'-' {8x) + ^^^ ^^^ ««-2(aa^)2 + . . . + (6a;)' (2).

From (1) and (2) we have

8y = wic"~^ (Sx) +
/l(ll- 1) „ o

1.2 a;'*--(S.7;)2+...+(5a:)".

= nx-' + 'i:i?-J-^ x"--(3^) + . . . + (8xY-\

Therefore

Sy

8x'
""^ '

1.2

Now 7i is a definite positive integer, and there are (^
-

1)

terms in this expression after the first. All of these terms have

the factor 8x. If we let 8x tend to zero, the sum of these terms

must vanish in the limit.

^8y^
It follows that Lt

(g|)
= ^^"~'-

Thus we have proved that^ when n is a positive integer, the differ-

ential coefficient of x"" is naf~'^.

Ex. Fill lip the blank column in the following table :

fix).
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§ 20. General Theorems on Differentiation.

Before proceeding to obtain the differential coefficients of

other functions, it will be useful to show that many complicated

expressions can be differentiated by means of this result, with

the help of the following general theorems :
—

Proposition I. Differentiation of a Constant.

It is clear that, if y = a, the slope of the line is zero, and
dv
-/ = 0. In other words, it is obvious that if a magnitude remains

the same its rate of change is zero.

Thus the differential coefficient of a constant is zero.

Proposition II. Differentiation of the Product of a Constant and

a Function of x.

Let y = au, where a is a constant, and u is a function of x.

We begin with the value x, and we take 5a: for the increment

of x.

When x becomes x-\-^jX, let u become w + Sm, and y become

y + hy.

Then y + 8y
= a(u + 8u),

, 8y 8u
and / = a^.

ox ox

For the value of x considered, we are supposed to know that

-T- exists : in other words, that
dx

is a definite number.
t.©

It follows that Lt (^jSx->0

M . T^ /^^"= a Lt (f).

Therefore -/ = a -^.
ax ax

Thus the differential coefficient of the product of a constant and a

function is equal to the product of the constant and the differential

coefficient of the function.

The geometrical meaning of this theorem is that if all the

ordinates of a curve are increased in the same ratio, the slope of

the curve is increased in the same ratio.

The dynamical meaning will be obvious to the reader,

c.c. c
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Proposition III. Differentiation of a Sum.

Let y = u + v.

Then, as before, y + 8y = (u + Su) + (v + 8v),

and %^S»^_
8x 8x 8x

We are supposed to know that, for the value of x considered^

^ and ^ have definite limiting values as 8x^0.

It follows, on proceeding to the limit, that

dy du dv

dx dx dx

The same argument applies to the sum (or difference) of

several functions, and we see that the differential coefficient of such

a sum is the sum of the several differential coefficients.

Ex. Differentiate the following functions :
—

(i.) x{2^xf

(ii.) {a + hx + cx^)x

/yt4
/v»a /vtis

(iii.) -^
+
-^
+^ + ^ + ^

(iv.) 2 + 2x + 3x2.

Proposition IV. Differentiation of the Product of Two Functions.

Let y = uv.

Then, as before, y + 8y = {u + 8v) {v + 8v).

Thus 8y
= v8u + u 8v + 8u 8v,

8y 8u 8v „ 8v
and ^ = v^ + u^ + 8u^-

ox ox ox ox

We are supposed to know that, for the value of x considered,

^ and — have definite limiting values as 8x -> 0.

ox ox

In this case 8u -> 0, as 8x -^ 0. It follows, on proceeding to

.the limit, that
dy_ du dv

dx~ dx dx

This result may be written

I dy _l du I dv,

y dx~ u dx V dx
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and when y = uvw^ we would obtain in the same way,

\ dy _\ du \ dv 1 dw
/pr o oi \

y dx u dx V dx w dx

In the case of two functions it is easy to remember that the

differential coefficient of the product of two functions is equal to the first

function x the differential coefficient of the second + the second function

X the differential coefficient of the first.

Ex. Differentiate the following functions as products :
—

(i.) (l+x^-) {2x^-1)

(ii.) (2a;2+l)(x + 2)2

(iii.) {ax + h)^{cx + d)'^

(iv.) x{x + l){x + 2),

and show that the results are the same if the expressions are multiplied

out and then differentiated.

Proposition V. Differentiation of a

Let y = u/v.

Then, as before, y + 8y = ^,

- ^ u + 8u u v8u-u<
and oy =

v + 8v V „/^ 8v

Therefore
8x

('4)
8u 8v

8x 8x

We are supposed to know that, for the value of x considered,

cT- and TT- have definite limitinsr values as 8x -> 0.
8x ox

In this case 8v -> 0, as 8x-^0.

Proceeding to the limit, it follows that

du^ dv

dy _ dx dx *

dx
~

v^

* This result may be obtained by writing

vy=u,
and then differentiating both sides of the equation.
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In words, to find the differential coefficient of a quotient, from
the product of the denominator and the differential coefficient of the

numerator subtract the product of the numeratm- and the differential

coefficient of the denominator, and divide the result by the square of

the denominator.

We can use this result to find the differential coefficient of x"",

when n is a negative integer.

Let n= -m, where m is a positive integer.

Then we have y = -^'
Oil

Therefore -f-
= ^-

—
,

dx Q?"'

since the differential coefficient of the numerator is zero, and

the differential coefficient of the denominator is m.7f'~\

Thus
dx

In particular, if y=->

dx x?

We return to this on p. 40.

Ex. Differentiate the following expressions

(i.) pi (ii.) (^+1)1^) (iii.)

(iv )
(^+^)'

(V )
i±^' {vi )

^^' + 2&^ + g

These five formulae, with the help of the result of § 19, enable

us to differentiate a large number of expressions, but they do

not apply directly to such cases as {ax + />)^^, (ax^ + 2bx + c)^^, etc.

Each of the above expressions is a function of a function of

X, and we proceed to prove another general theorem :
—

Proposition VI. Differentiation of a Function of a Function.

Let y = F(i^),

where w =/(.t)

/e.g. y = u^'^, \

\where u = a^ + x^J.
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We begin with the value x, and we take 8x for the increment

of X.

Then when x is changed to a; + 8x,

let u become u + 8u,

and y become V + ^V'}

the functions being such that for a small change in x we have

a definite and small change both in u and y.

But
^/
=
'/-T-OX bu ox

Now we are supposed to know that, for the value of x con-

sidered, — has a definite limiting value as 6a: ->0. In this case,

when 8a; ->0, 8m ->0. Also we are supposed to know that
-^

has a definite limiting value as 8w->0.

It follows, on proceeding to the limit, that ,

dy _ dy du

dx
~
du dx*

It is important to notice that this rule

dy _ dy du

dx
~
du dx

cannot be inferred from striking out the dv!^^ as if the expressions

were fractions. We have already laid stress on the fact that

the differential coefficient
-Jf-

is not to be looked upon as a

fraction dy divided by dx.

Corollary. If we put 2/
= a; in the above result, we obtain

dx du_
du dx~

'

It follows that _- = __.
du du

Tx *

Altering this notation, we can say that

dy dx
, J ^1, 4. dy 1

3— X:5— = 1, and that 3— = -5— •

dx dy dx dx

d^
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This theorem could have been proved directly, using an argu-
ment very similar to the above.

Also it is instructive to see that it follows immediately from

the geometrical interpretation of the differential coefficient.

Ex. 1. Differentiate {x+l)*.

Let
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8. Fill up the blank form in the following table :

f

/(^).



40 DIFFEEENTIATION OF ALGEBRAIC FUNCTIONS

Therefore
dy
dx'
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Ex. 1. Fill up the blank column in the following table :—

r^>

/(«;).
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5. It y=~ f-r>, find ^.

We shall work this example by the product rule instead of the quotient
rule. This method often saves dividing out by some factors.

By the product rule [cf. §20, Prop. IV.],

dx~^
^ ' dx {3x+4)^^ {3x + 4f dx^^^ ^' '

Now we have seen in Ex. 2 that ^
d 1

b
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EXAMPLES ON CHAPTER III

1. Find ^ in the following cases :
—

(viii.) y = {\ + x^T.

(ix.) y = s/x'^ + a^+ \/x^ - a^.

(iv.) y= (x + a)*.(a=+ 6)«. (X.) j,
=_i=+-^^.

X^

(i.)
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8. If a volume v of a gas, contained in a vessel under pressure p, is

compressed or expanded without loss of heat, the law connecting the

pressure and volume is given by the formula

^yV
—
constant,

where 7 is a constant.

Find the rate at which the pressure changes with the volume.

dv c^
9. In Boyle's Law, where pv=.c^, show that -t-= —Ty

What does the

negative sign in this expression mean ?
P P

10. In van der Waals's equation

(
^ + -^ j

(v
-

6) = constant.

Prbvethat *'- "'-^'

dp f a 2ah\



CHAPTEK IV

THE DIFFERENTIATION OF THE TRIGONOMETRIC FUNCTIONS

{The angles are supj^osed to be measured in Radians)

§ 22. The Differential Coefficient of the Sine.

We begin with the value x, and we put

y = sin X.

Then we take 8x as the increment of x, and write 8y for the

corresponding increment of y.

It follows that y + 8y = sin {x + 8x).

8y = sin {x + 8x)
- sin x

( 8x\ . 8x= 2 cos ( a; + -^ j
sni— .

8y_

- -""' ^
8x

Therefore

Therefore cos X + 8x\
2;

. /8x\

8x

T
Proceeding to the limit, and remembering that

Lt (—pr-] = Ij it follows that

If y = sin X,
dy
dx

= cos X.

N.B.—When y = sin {mx + n),

dy dy du ,

-^ z=-f- -— where u = mx + n,
dx du dx

_^/(sin u) du~
du dx

= cos w X m
=m cos {mx + n).
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Ex. 1. Fill up the blanks in the following table :
—

Ax)
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§ 24. The Differential Coefacient of the Tangent.

Let

47

sin a:

^
cos:r

Then
dx

cl . . d
cos ic-y- since - sin a^ -7- cos a^

dx dx

cos'^a-

cos^a^ + sin^a;
"~

cos%;

~
cos%

= sec^a^.

dy
Thus, if y = tan x, ^ = sec^x.

N.B.—AVhen
ij
= tan {mx + n), -j-

= m sec^ {mx + n).

Ex. 1. Fill up the blanks in the following table :
—

f{x)
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Let z_MOP be the angle radians, and let OM be 1 unit in

length.

Let ^POQ be W^ and let QPM be perpendicular to the line

OM from which 6 is measured.

Let PN be perpendicular to OQ.
Then

8(tan6')
= PQ
= PNsec:LNPQ

Fig. 10.

Thus

S(tan^)
he

and proceeding to the limit,

d_

cie

= PNsec(^ + 56>)

= OPsec(6' + S6')sinS(9

= sec ^ sec
(6' + 8^) sin 8(9.

= sec^sec(^ +
8^)(-'||^),

tan 6 = sec-^.

Examples. Find ^ in the following cases :
—

dx

(i.) y= '2a&\n{hx-\-c)Bin[hx -c).

(ii.) y = a;-cos 2a;.

(iii.) ?/
= tan 3a; + cot 3a;.

, . ,
sin 2a; - sin x

(iv.) v = .
^ ' ^ cos a;

(v.) y = x'^mxi'^x.

(vi.) y = x'^B\nnx.

(vii.) y= sin-*" a; cos^ a;.

( viii. ) y= sec"^(ax + 6) + cosec2(cx + d).

§ 26. The Graphs of the Trigometrical Functions.

The results, which we can deduce from the differential co-

efficients of the functions

sinic, cos a; and tana:,

should be compared with the information to be obtained from

the graphs of these functions.

These graphs are given
—when the angle is measured in

degrees and with a suitable scale—in Figs. 11, 12 and 13.

It must he noticed that when x is the number of degrees in the angle

whose sine is y, the differential coefficient -^
is not cos x.
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It is a good exercise for the reader to show that in this case

dx 180
cosx.

A similar change has to be made in the differential coefficients

of the other Trigonometrical Functions, when they are not

measured in radians.

^ "1 t/fpc
is-x

'^

t h

y= co%x.

Fig. 12.

However, the general behaviour of the functions—when they
are increasing, and when decreasing; when they reach their

C.C. D
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maxima or minima, if such exist
;
when their graphs are con-

cave upwards, or convex upwards, etc.—can be seen from these

figures.

Ex. In the Four-Figure Tables, we are told that

sin 46° =-7193

and sin46°6'=-7206.

Compare this result with that obtained by the Calculus method.

Use cos 46° =-6947.
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THE INVERSE TRIGONOMETRICAL FUNCTIONS

§ 27. The Diflferentiation of the Inverse Sine.

To any value of x, lying between - 1 and + 1, there corre-

sponds an infinite number of angles which have this value x for

their sine. If y is the circular measure of one of these angles,

then sin?/ = a:

is the equation connecting x and y.

If we give to
//

a number of

values, we can obtain from the

Tables the corresponding values of

X, and in this M^ay plot the curve

sin y = x.

It is clear that it is a periodic

curve of period 2xr in y, and that

it could be derived from the sine

curve by placing this curve along

the axis of y, instead of along the

axis of X.

Another way of drawing the

curve—and this is common to all

such inverse curves—is to fold the

paper, on which the curve

y = sin X

is drawn about the line

y = x,

and this sine curve will then co-

iucide with the curve

sin y = X.

It is convenient to have a name fig, u.

and a symbol for this functional

relation. If y is the circular measure of the angle whose sine

is X, y is said to be the inverse sine of x, and the notation adopted
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To save ambiguity and to make the function single-valued
—

that is to give only one value of y for one value of x—it is an

advantage to restrict the symbol

sin~^a;

to the number of radians in the angle between -
^ and

-^
whose sine

is X.

With this notation the curve

y = sm~^x

would be the part of the curve on Fig. 14 which lies between

the values -- and - of y. This is drawn on Fig. 14 in a

heavier line.

We shall use the symbol sin'^a;

for this value only : that is, the angle whose sine is x is to be

measured in radians and to lie between - ^ and

» We proceed to the differentiation of sin^^x.
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Therefore we must have

cos y = Vl - «^

the square root being taken with the positive sign.

Hence
^

1
Therefore the differential coefB.cient of sin ^x is

Vl-x2

It will be noticed that if we take the complete curve for the

inverse sine, instead of the portion from -- to ^ only? the

gradients at the points where x = const, cuts the curve are

alternately I

sl\-X^

Ex. 1. If y=sin

We have

But

It follows that

-1? <^y^
1

a dx ^a2-x2'

=:sm-^
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4. Fill up the blanks in the following table :

/(^).
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We proceed to the differentiation of the inverse cosine.

We begin with the equation

y = cos~i X. (0 < y < tt)

Then cos?/ = a:.

On differentiating both sides of this equation with regard to

X, we have

-7- cos ?/
= ^- a; = 1

dx dx'

But ,- cos ?/
= -7- cos yx-r-dx cii/ dx

It follows that

sm^

and

dx

dy
dx

1.

1

sin

But we know that cos y — x

and that < ^ < tt.

Therefore we must have

sin?/ = \/l -x^,

the square root being taken

with the positive sign.

Hence

dji^ __ 1

dx~ Vf^^*

Therefore the differential

coeflBlcient of cos~ix is
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For example, sin"

cos"

l^TT 1

2~6

2~3'

x/2.

COS"

It will be noticed that if we take the complete curve for the

inverse cosine, instead of only the portion from to tt, the

gradients at the points where x = const, cuts the curve are

alternately 1

Vi-:

Ex. 1. If y= cos- ,/x\ dy.
ay dx Va^ - x''

2. If y= cos-^x^), ^= 3:r2

3. If y= cos-
l + x'J' dx 1+x^'

1 -X-
In this example, we have y= cos~^u, where ?t=

^
.

But rfy _ dy dii

dx
~
du dx

Also

And

It follows that

dy^ L_.
du sfl^^^ 2x

du_{l+x'^){- 2x) -
(I
-
a:^)2x

dx~ (1+X2)2

4a;

(1+0:2)2

dy 2

dx l+x"^'

4. Fill up the blanks in the following table

Ax)

fix)

C08-^(l -X) 'Vi cos~^{2a;- 1)
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§ 29. The Differentiation of the Inverse Tangent.

To any value of x lying between - oo and oo
,
there corresponds

an infinite number of angles which have this value x for their

tangent. If y is the circular measure of one of these angles,

tan y = x

is the equation connecting x and y.

This relation is also expressed by the notation

«/
=

tan~^ic,

and y is said to be the inverse tangent of x.

Part of the curve y = t3inr'^x

is given in Fig. 16.

y=tan-\
X X 1^
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We begin with the equation

?/
= tan ^x.

\-T2^<y<2)
Then tan

ij
= x.

On differentiating both sides of this equation with regard to x,

we have ^ ^/

-r-tanv= -v-a;= 1.
ax ^ ax

-D , d ^ cl dy „ (Zy
rJut -7-tan?/ = -^tanwx -y^ = sec-2/^.

dx '

dy
^ dx ^ dx

And sec^^ = 1 + tan-y = 1 + a:^.

Therefore -f^ = ^,

—
„.

dx l+x^

Therefore the differential coefficient of tan~^x is——
„.

1 +x2

It will be noticed that if we take the complete curve for the

inverse tangent, instead of only the portion between -
^ and -,

the gradients at the points where x = const, cuts the curve have

1

the same value
1 +X-'

Ex.1. Ify=tan-i-, ^= -0^-

2. If y=
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which is true if we take cot~^a: to lie between and tt, wliile tan~^x lies

between -
^ and

^.

3. If y= Un-^x'), ^=^,'^ ^ " dx 1 + x^

4 If =— tan-i?:^, ^y^ ^

^
\/S

^"
\/3

'

c^^ x'^ +x+V
In this example, we have

2.-1 1,
2a;+l

V= -7=tan^?t, where ?t=—,- •

But
(Zy _ dy du

Working out ^, we find that it is equal to
n/3

du

And

It follows that

du_2
dx~^^

dy_ 1

2(a;2 + a;+l)

dx x^ + x+\

5. If y = xtdM~^x, -^t=~—
—
^ + tan '^x.

Using the rule for differentiating the prodvict of two functions, we have

dy d
, ^

. . d
-^ = a;-r- tan~^x + tan ^x-r-x
dx dx dx

—
.; + tan~^a;.

\+x^

6. Fill up the blanks in the following table :
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rt T£ sin a; ^, ^ dy cos^a^-sin^a;
2. If y=z—7 , prove that -^ = -,

. ,„.
1 + tanx ^ ax (cos a: + sin a;)'^

3. If y= cos(a;^), prove that
--^=

- Sa;^ sin (a;^), and find -~ when

(i.) y= a;'"sina;".

(ii.) y = a:"* cos a;",

(iii) 2^
= a;"* tan a;".

4. Differentiate the following functions :
—

(i.) (a;2+l) tan-^a^-a;.

(ii.) X sm~^ X + sfl^^^.

(iii. ) tan-i Z'^ +^V (Put six= tan d, sia = tan a. )

V 1 - \lax J

(iv.) tan
\\-x+x^y

(v. )
cot-i

(

^+'^^+-^-
\

. (Pixt a;= tan d.
)

5. A particle P is revolving with constant angular velocity w in a circle

of radius a. The line PM is drawn from P perpendicular to the line from

the centre to the initial position of the particle. Find the velocity and

acceleration of M.

6. If the position of a point is given at time t by the equations

x= a{u}t-\-?,\n(j3t),

y= a{\ -cosw<),

where a and w are constants, find its component velocities and accelerations,

and its direction of motion at the time t.

7. Prove that when

dx^ xs!x^-\

and that when a;> 1, -5- (sec~^a;) =dx xsl:x?-\

and illustrate your results from the graph of the inverse secant.

8. Prove that when
^ A

d
,

,
,

1
a;> 1

, -J- (cosec~^x)= 7
——

»' dx^ xslx^-l

and that when x<-\, ^- (cosec-^a;)ax XV a:^ - ]

and illustrate your results from the graph of the inverse cosecant.



CHAPTER V

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS—MAXIMA AND

MINIMA—PARTIAL DIFFERENTIATION

§ 30. Introductory.

There remain two important functions which we must learn

to differentiate : the logarithm of x to the base a, and its inverse

function a"".

We shall find that there is a particular number denoted by e

for which the Logarithmic Function

log,.?;

and the Exponential Function

are of the greatest importance.

The differential coefficients which we require can be obtained much
more quickly with the a^id of Infinite Series, and those who are familiar

with that branch of Algebra will probably prefer the usual method of

finding them given in the Appendix. In the articles which follow we
obtain them without using more than Elementary Algebra and the

Logarithm Tables. It is true that this discussion, in one or two points,

is not quite rigorous. Still those for whom the rigorous treatment is

suitable will get it in their later course. Those who do not carry their

study of the Calculus further will yet have obtained a working knowledge
of the meaning of the new functions and a complete enough grasp of the

application of the Calculus to them.

The following formulae in logarithms are supposed known :

logxMN = logM4-logN, (1)

log
M.

logM- log N, (2)

logM'' = rtlogM. (3)

These are true for any base. All the numbers are supposed to

be positive.
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By a simple application of the Index Laws, another formula

is obtained, which allows us to change logarithms from one base

to another. This formula is

log^N^l^;
'

(4)

If we put N = Hn this equation, we have

\og,bx\og,a^l. (5)

Thus we can write (4) in the form

log,N = log„/>xlog,N. (6)

Since log^a;
=

log^h \og,x,

we have —
\og„x

=
log^fi -r. logip'.

It follows that, if we know the differential coefficient of the

logarithm of x to any base a, we can write down that for any
other base b, it being of course understood that the bases a and b

are independent of x.

In the discussion which follows we shall first find

d

dx logio^' ;

but, before we can do so, it Avill be necessary to learn something
about the behaviour of the expression

1

^''logio(l+,^^

as n gets larger and larger.

In the work on Algebra, which we are omitting, it is proved

rigorously that the number (1 + -) continually increases as 7^

increases, and that when 7i -> go
,
it has a definite limiting value.

In other words, Lt ( 1 + -
)

is a definite number.

It is true that this number is incommensurable, but its value

can be obtained to as close a degree of accuracy as is required.

Correct to 7 places of decimals it is 27182818.

This number is denoted by e. It is the base of the Napierian

or natural system of logarithms.

From the result that „

Lt (l+-) =e,
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Lt n
log„(

1 + -
)

=
log„^,

it follows that

where a is any base.

In particular, if we take the base 10 and look up the logarithm

of 2-7182818 in the Tables, we find that

Lt
wlogio(l+^)

= -4342945.

Without assuming the truth of any of the above work, we

shall now see what information the Tables give us regarding the

expression / i\

§ 31. The Expressions

(l+^
and

nlogi,(^l
+
-).

In the accompanying tables the approximate values of

«log,„(l+J,)

are given for 7i= 1, 50, 100, 500, etc. The figures in Column II.

are calculated from 7-Figure Logarithm Tables
;

those in

Column III. from 8-Figure Tables.

TABLE

Showing the A'alue of
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It will be seen that the values we have obtained for

«Iog,o(l+^)
increase with n until we reach ?i = 2000 in the second column,

and n= 3000 in the third.

The oscillation that we meet there, and in some of the later

numbers, is due to the fact that in 7-Figure Logarithm Tables

the seventh decimal place is only the nearest value, and may err

to the extent of "5 either way. When the logarithm is multiplied

by 1000, the unknown error in the product comes within "5

either way of the fourth decimal place. In the products from

2000 to 9000 this may affect the fourth decimal, and even the

third.

The same argument applies to the results in Column III.

from 8-Figure Tables, and in this way the oscillations, when

71 = 3000 and 4000, and when 71 = 7000 and 8000, can be

explained.

To avoid this source of error, and to show still more clearly

the behaviour of the expression

»log.„(l+,')
as n increases, the following table has been calculated, cairect to

ten places, using 15-Figure Logarithm Tables.

TABLE

Showing value of n
logio|

1 + r )
correct to 10 places.

n
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It will be seen from these results that we may safely assume

that as n gets larger and larger

log>o(l+i)

gets very near the number 0-4343
;
and we find from the Tables

^^^^
logio2-7l8

= -4343.

We shall therefore assume that

.00 \

Lt
(
1 + -Y

exists, and we shall denote it by e.

We shall take as our approximation to e the number 2 71 8,

and we shall take for our approximation to log^Qe the number

•4343.

We are now able to proceed to the differentiation of the

logarithm ^of x to any base. We shall begin with the base 10,

and then find the differential coefficients of log^a: and log„a:.

From these results we shall readily obtain the differential

coefficients of e"" and a*.

§32. The Differentiation of log^oX. (Cf. App. p. 130.)

We begin with the value x, and we put

y = \og^ox.

Then we take the increment 8x of x, and we write 8y for the

corresponding increment of y.

It follows that y + 8y = log^Q (x + 8x).

Therefore we have

^f/=^^og^o{^-i-8x)-\og^QX

=
log,o(l+f).

Therefore | =
ilog.(l4)

X
Now put 7i =^ on the right-hand side,

c.c. E
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Remembering that x is fixed, we see that when the increment

of X, namely 8x, is made smaller and smaller, n gets larger and

larger.

Also as 8x->0, n^- co .

Therefore we have

Lt f^V-xLt [n\ogJ\ +
^^

It follows from § 31, that

dx
iQgipg

loff e
Thus the differential coefficient of logi^x is _^io_.

§ 33. The Differentiation of logeX and logaX. (Cf. App. p. 130.)

Since l«g«^
=T^' P-§30(4)]

it follows that
^^og,^

=
Io~. T^ l^Sio^

log^o^""^
^^i^"-

Therefore -^ legex = -
.

dx X

Again we have log.^
=
}^. [Cf. § 30 (4)]

It follows that
i^^^aX-^J^\og^x

1 1

log.a x

Therefore ^ log.x ^^^ =
^^-f

. [Cf.§30(5)]

In Elementary Trigonometry it is convenient to write logN
for log^oN. In the Calculus and in Higher Mathematics we

usually write log N for log.N : that is, we only insert the base

of the logarithm log„.T

when the base a is different from e.

However sometimes we shall insert the base e, if it is necessary
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to emphasise the fact that logarithms are being taken to that

base. With this notation the results of this section are written

logae

dx^
^ ^

xloga X

(x>0)

(x>0)

The equation -T-\ogx
= - is of the greatest possible importance,ax X

Ex. 1. If y = los{ax + b), -^^
^

,
.^ ^^ " dx ax + b

We have

But

Therefore

y = logii, where u = ax-\-b. &1. ,

dy _ dy du
dx du dx'

dy I a
-^—-xa = 5--dx u ax + b

2. If .= I„g,a.= .2...o,, 1=J^|±^.

3. If y=; log sin x,

4. If y = log cos a-,

dy
dx

dy
dx

= Q,OXiX.

tana;.

5. If y — log tan'-,
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We have y = log(a2-a:2) -log(62_3.2)^

Therefore ^= _ 2^,4-
^^

2x
(a2-x2)( 62-^:2)

9. If y=log(.:i^/5^#,, 1=^,-
10. Tf yr^lng J«-^>cosx

(/y^
a6sin:c

§34. The Differentiation of e^. (Cf. App. p. 130.)

Let y = e^

Then we have log y = x log e.

Therefore log y = x, since log/ = 1 .

Differentiating both sides of this equation with regard to x,

3 nave
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4. If 7/
= e~'^''smbx, -^

= e~'^[bcosbx-asmbx].

5. If y = rte^
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In other words, before differentiating an equation involving the

product or quotient or powers of other expressions, take logarithms of

both sides of the given equation.

Thus when we are given an equation involving the product, or

quotient, or powers of several expressions, it is often an advan-

tage to take logarithms of both sides of the given equation

before differentiating.

Ex. 1. li y--
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Now if a =
tan~i(-V

a and h being positive,

cos a = -7 and

Therefore -~-= - Ja^ + //^ e~"''(sin ire cos a - cos Ja; sin a)ax ^ '

= _ ^^2-:^2 e-«- sin {bx
-

a).

Thus the tangent to the curve y = e~"'''smbx is parallel to the

axis of 2;, when bx = n7r + a,

and the equation defines an oscillating curve with continually

diminishing amplitude in the waves as we proceed along Ox.

It is easy to show that when

y = e""* sin {bx + c),

-^ = ^a- + h- e""" sin (bx + c + a),
UjX

and that here the waves increase in amplitude. Corresponding
results hold for the case of the cosine.

§ 38. Maxima and Minima Values of a Function of one

Variable.

The student is already familiar with the graphical and

algebraical discussion of the maxima and minima of certain

simple algebraical expressions. The methods of the Differential

Calculus are well adapted to the solution of such problems.
If the graph of the function is supposed drawn, the

turning-points, or places where the ordinate changes from

increasing to decreasing, or vice versa, can only occur where

the tangent is parallel to the axis of x, as in the points

Aj, A2 . . . of Fig. 17, or where it is parallel to the axis of y as

in the points Bj, B^ . . ., except in such cases as the points

Cj, C2 . . ., where, although the curve is continuous, the gradient

suddenly changes sign, without passing through the value zero

or becoming infinitely great.

In case (A) :

-j-
is zero at the turning-point ;

and if this point
ax

is one at which the curve ceases to ascend and begins to descend,

-^ changes from being positive just before that point to being
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negative just after. At such a point the function is said to

have a irmximum value. In the other case, where the curve

ceases to descend and begins to ascend, -^ changes from nega-

tive to positive, and we have a minimum. In Fig. 17, at A^
there is a maximum

;
at A^ there is a minimum.

In case B :

;7-
is infinitely great at the turning-point ;

and

at B^, where there is a maximum, it changes from positive to

Fig. 17.

negative, while at B^, where there is a minimum, it changes from

negative to positive.

The other turning-points, C^, 0^ ^^^ ^ig- ^^ correspond to dis-

dii
continuities in

-p,
but it can be shown that these will not occur

in the functions with which we are dealing.

We thus obtain the following rule for finding the maxima and

minima of a function f{x), omitting cases B and C.

Obtain f(x) and solve the equation f{x) = 0. Let its roots he x^ ,

^2, .... Examine the behaviour off\x) in the neighbourhood of each

of these roots.
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If f'{x) changes from positive to negative as ive pass through one of

these roots, then f{x) has a maximum value there.

Iff{x) changes from negative to positive as we pass through one of

these roots, then f{x) has a minimum there.

Iff'{x) does not change sign as we pass through the root consideredy

then f(x) has neither a maximum or a minimum there. .

§39. Points of Inflection.

Although the vanishing of
'

is a necessary condition for a

maximum or minimum, it is not a sufficient condition, since the

gradient of the curve may become zero without changing its

sign as we pass through that point. Examples of such points

are to be found in D^, D.^ of Fig. 17. In the case of D^, the

gradient is positive before and after the zero value
;
in the case

of D2, it is negative. At these points the curve crosses its tangent^

and when this occurs, whether the tangent is horizontal or not,

the point is called a point of inflection.

From what we have already seen
[cf. § 18] as to the conclusions

d-y
we can draw from the sign of v^, it is clear that, as we pass

through the point D^ of Fig. 17, —^ changes from being negative

to being positive. The curve is convex upwards just before D^ :

it is concave upwards just after Dj. At D^, ;7 1
= 0.

It will be seen on drawing a figure that at points where

a curve crosses its tangent, the second differential coefficient

vanishes and changes sign, provided that the gradient of the curve

is continuous.

It is also easy to show that when ^ =
0, and -t4 is negative^

there is a maximum.

And when -/ = 0, and — ^^ positive, there is a minimum.

Ex. 1. Show that y = ax'^ + 2bx + c has alwa3^s one turning-point; and

point out when it is a maximum and when it is a minimum.

2. Find the maximum and minimum ordinates of the curve

y = jc^ -6x^+12,

and also find the points of maximum gradient.
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3. Find the turning-points of the curve y^^ix+lfix-^)^, and show
that (

-
1, 0) is a point of inflection,

4, Find the turniner-points of y = , ^, and of y =— -,.^ ^ -^

{x-2)
^ cx + d

HO. Partial Differentiation.

So far we have been considering functions of only one inde-

pendent variable, i/=f(x). Cases occur in Geometry and in all

the applications of the Calculus where the quantities which vary

depend upon more than one variable. For instance, in Geometry
the co-ordinates of any point (x, y, z) upon the sphere of radius a,

whose centre is at the origin, satisfy the relation

Hence we have z'^ = a- - .?:-
-

i/,

and if we cut the sphere by a plane parallel to the yz plane,

a,long the circle Avhere this plane cuts the sphere x is constant,

a,nd the change in z is due to a change in y only. In the section

by a plane parallel to the zx plane, the change in z would be due

to a change in x only. Similar results hold for other surfaces.

Again, the area of a rectangle whose sides are x in. and y in.

is xy sq. in., and we may imagine the sides x and y to change
in length independently of each other; while the volume of a

rectangular 1)0x whose edges are x, y, and z in. is xyz cub. in.,

and X, y, z may be supposed to change independently.

The ordinary gas equation

pv
7m = constant

is another example of the same sort of relation, and it would

be easy to multiply these instances indefinitely.

Let the equation ^=f(x, y)

•express such a relation between two independent variables x and

y, and a dependent variable z.

Let us suppose that the independent variable y is kept constant

and that x changes.

Then the rate at which z changes with regard to x, when y

is kept constant, will be given by

j^^ f /(.T4-ga;, y)-f(x, y) '\
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In the second case let x be kept constant and let y change.

Then the rate at which z changes will be

Lt )f{^'^y+^y)-f{^,y)

\
These two differential coefficients are called the Partial Differ-

ential Coefficients of z with regard to x and y respectively, and

are written .c- and
^" respectively.*

Ex. 1. When z= xy, prove, from the definition, that ^=y, and ^=-x.

2. When 2az= a:^ + y^, prove, from the definition, that :=^ = -, and r^- = -•^ -^ Ox a' dy a

3. If u— xyz, prove, from the definition, that
.-^

=
yz.

§41. Total Differentiation.

When the variables x and y in
'

the above examples both

depend upon a third variable t, z will vary in value, as x and y

change with /.

In Ex. 1 above, ^"^^V^

z-\-^z = {x + &) {y + hj).

8z 8x 8y 8x

bt
-^

hi bt bt
'

Proceeding to the limit, we have

dz dx dy
*

Tt^-'~dt^^ti'

But
y'^'?r

^^*^ ^ ^ ^' ^^^" ^ ^ ^y-

Therefore, in this case,

dz _ dz dx dz dy
dt dx dt dy Hi'

In Ex. 2 above, laz^x'^ + y-,

we find 'la^z = 2x8x + 2y8y + (8xy + (8yY.

*Itishardly necessary to point out that this symbol — stands for an operation,
Ox

and that dz, dx are not to be considered separately ;
also that this is a different

notation from the 5x of our earlier work.



76 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

rpi dz dx dy

,, ,
. dz dz dx dz dy

sothataga.n _ =_ ^ +_
-^.

It can be shown that this holds in general, but the proof of the

theorem cannot be taken at this stage of our work.

The differential coefficient -f^ is called the Total Differential
at

Coefficient in such cases, as compared with the Partial Differen-

tial Coefficient defined above.

As a special case, when z =f{x, y) and y is a function of x, we

obtain ^ _ ?^ '^di
dx dx dy dx^

and the left-hand side is called the Total Differential Coefficient

of z with regard to x.

Also the result that, when z=f(x, y) and .r, y are functions of ^,

dz _ dz dx dz dy
dt~ dx dt dy dt

may be used to obtain an approximation to the small change hz

in z due to the small changes ^x and % in x and y, when t

becomes t + U.

For, as we have already seen (p. 23),

dx
8x will be approximately -jr

8t
;

dy
Sy will be approximately -jj

8t
;

dz
and 8z will be approximately -ji

8f.

We thus have, on multiplying the above equation by 8t,

8z= 7s-8x +~ 8y, approximately.

§42. Differentials.*

In the case of the curve y=f{x), the increment 8y of y which

corresponds to the increment 8x of x, is given in Fig. 18 l)y HQ.

*
§ 42 may be omitted on first reading.
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Also HQ = HT +
TQ=:Sa:^

+ TQ

.-. 5^ = ga.g
+ TQ.

As Sx gets smaller and smaller, TQ gets smaller and smaller,

at least in the neighbourhood of P.

The " small quantity
"
TQ is a smaller " small quantity

"

than &r, since
8y _dy TQ,

8x dx Sic
'

and in the limit -^ is equal to -f~, so that —-^ must disappear in

^, ,. .^ & dx 8x
the limit.

In mathematical language, if 8x is an infinitesimal (or small

quantity) of the first order, TQ
will be at least an infinitesimal

of the second order.

It is convenient to have a

name and symbol for this

quantity -^
8x. The

adopted is the "differential of

y," and the symbol \s'"dy."

Hence with this definition of

the term "
differential,"

^^-m 8x,
M

Fig. 18.

where we have enclosed
-^

in brackets on the right-hand side,

so that it may be clear that this stands for the differential

coefficient obtained by the processes we have been developing
in the preceding pages.

By the above definition

d{f{x))=^f'(x)8x, where f'{x)
=
f^;

and dx = 8x.

So that dy =f\x) dx^ when y =f{x).

Hence we may restate our definition as follows :
—

The differential of the independent variable is the actual imyrement

of that variable.
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The differe7itial of a function is the differential coefficient of the

function midtiplied by the differential of the iridependent variable.

In this definition it is not necessary to assume that the

differentials are small quantities or infinitesimals, but in all

the applications of this notation this assumption is made.

Then the equation dy ^f{x) dx

will give the increment of y, if small quantities of the second

order be neglected.

Such an equation as dy=f'(x)dx,

a differential equation as it is called, may be used to give the

approximate change in the dependent variable, and from this

point of view it saves the trouble of writing down the equation
between the increments, and then cutting out the terms which

are so small that they may be neglected.

Ex. 1. Write down a table of differentials corresponding to the

standard diflferential coefficients.

e.g. d{x^^) = nx"-'^dx.

2. If a: = a cos 6, y =asm 6, prove b}' differentials that -j-—- cot d.

3. If a;= a(w< + sin w<), y— a{\-Q,o%wt)^ prove that -^ = -

^

dx 1 + cos o)t

4. If 2 = xy, prove that dz= r^dx + T^ dy.

EXAMPLES ON CHAPTER V

1. Find the differential coefficients of

(i.) a;e^, (ii.) ar^'e''^ (iii.) (ax + h)e''''+^, (iv.) e**i»~\

2. Find the differential coefficients of

(i.) ei+^^ (ii.) xV-^, (iii.) a;'»e«*", (iv.) a;"»a^".

3. Find the differential coefficients of

(1.) x-logx,
(ii.)log('l^^V

(iii.)log(x/^l+V^^,
(iv.)log('L^'V

(v.)log( JL \ {Vi.)\og(\±-^f).

4. Differentiate the following expressions logarithmicallj^ :
—

(i.) x/(2x-+l)(.r-2), (ii.) ^ (iii.)

^
, (iv.) a-,

,
> sin"?na; /

•
\ /, 1\*

(v.) —-—
, (vi.) 1 + -

)
;

cos"* ?i.r \ xj
and point out why we cannot apply our formula for the differential

coefficient of x^ to the case of yf.
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14. If 2 = o + r:7, prove that x^^ -^y :r^—^z.a? h-
^ ^x ^

dy

16. The formula for the index of refraction ;u of a gas at temperature Q"
'

and pressure ^9 is fx^-\ p

where /io
= the index of refraction at 0°,

a = the coefficient of expansion of the gas.

Prove that the effect of small variations M and 5^ of the temperature
and pressure on the index of refraction is to cause it to vary by an amount

^
760 Vl + a^ (1

17. If 'pv — R^ is the ordinary gas equation, where Q—\-\-at, write down
the values of

(U.) |.
(iii.) The approximate increase in the pressure due to a small decrease

in the volume, the temperature being unchanged,

(iv.) The approximate increase in the volume due to a small increase in

the temperature, the pressure remaining the same,

(v.) The approximate increase in the pressure due to a small increase

in both temperature and volume.

18. Assuming that the H.P. required to propel a steamer of a given

design varies as the square of the length and the cube of the speed, prove
that a :4% increase in length, with a 7 % increase in H.P., will result in

a I % increase in speed.

19. The area of a triangle is calculated from measurements of two sides

and their included angle. Determine the error in the area arising from

small errors in these measurements. ^
20. Assuming that the area of an ellipse whose semiaxes are a and h

inches is -Kah sq. in., and that an elliptical metal plate is expanding by heat

or pressure, so that when the semiaxes are 4 and 6 inches, each is increasing

at the rate *i in. per second, prove that the area of the plate is increasing

at the rate of tt sq. in. per second.



CHAPTER VI

THE CONIC SECTIONS* ^

§ 43. Introductory.

In this chapter we shall very briefly examine the properties

of the Conic Sections, or the curves in which a plane cuts a

Right Circular Cone. It is shown in the Geometry of Conies

that these curves are the loci of a point which moves in a plane
so that its distance from a fixed point is in a constant ratio to

its distance from a fixed straight line. The fixed point S is

called the focus ; the fixed line, the directrix
; and the constant

ratio, e, the eccentricity.

When e<l, the curve is called an Ellipse ;

when g= 1, the curve is called a Parabola ;

when e>l, the curve is called a Hyperbola;
and the circle is a special case of the ellipse, the eccentricity

being zero, and the directrix at infinity.

§44. The Parabola (e=l).

(i.) To find its equation.

Let the focus S be the point (a, 0), and the directrix the line

x + a = (Fig. 19).

Let P be the point (x, y).

Then since SP2 = PM2,

(x-af + y^
=

(x + af.

,'. y^
= 4cax.

* The student is referred for a fuller discussion of the properties of the Conic

Sections to the books mentioned on p. 15. Many of their properties are most

easily obtained geometrically, and are to be found in books on Geometrical

Conies.

C.C. F
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This is the equation of the parabola with the origin at the

point where the curve cuts the perpendicular from S on the

directrix. This point is called the vertex of the curve ;
the axis

M
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(iii.)
The equations of the tangent and normal at {x^, y^).

du 2fl
Since the value of ~ at (Xq, y^ is —

,
the equation of the

ax jQ
tangent there is

x-x^ 2/0'

or y^{y-y^)=^2a{x-XQ).

This becomes yyQ
— 2a{x + x^, since y^ = iaxQ.

Also the normal is the line

yQ{x-x^)-\-2a{y-y^)
=

0,

since this line passes through {xq, y^ and is perpendicular to

the tangent.

EXAMPLES ON THE PARABOLA

L Show that the curves a;^= ±4i/ are parabolas, and plot the curves.

2. Show that the equation y= ax^ + 2hx + c always represents a parabola,

and plot the curves
(i.) y= x^ + ^X + ^,

(ii.) Ay= x'^ + 4LX-^,

(iii.) x= y'^^y.

Find also (i.) The co-ordinates of their foci ;

(ii.) The co-ordinates of their vertices ;

(iii.) The equations of their latera recta ;

(iv.) The lengths of their latera recta
;

(v.) The equations of their axes ;

(vi.) The equations of the tangents at their vertices.

3. Find algebraically and graphically the minimum value of the expres-
sion a;2-2a;-4, and the maximum value of b + Ax-2x^.

4. The tangent at P meets the axis of the parabola of Fig. 19 in T, and
the normal meets the axis in G. Prove the following properties :

—
(i.) AN= AT,

(ii.) SP =ST = SG,

(iii.) NG = 2AS,

and show that the tangents at the ends of a focal chord meet at right

angles on the directrix.

5. Prove that the line y = x-\-\ touches the parabola y'^
= 4rX, and that

the line y= mx-\— touches the parabola y^= 4iax. Find the point of

contact in each case.

6. Find the equations of the tangent and normal at the point where

the line x = 2 cuts the parabola x^='iy.
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7. Find the equations of the tangents and normals at the extremities

of the latus rectum of the parabola 'ip'
= ^x, and show that they form a

square.

8. Prove that the locus of the middle points of the chords of the

parabola y^=^ax, which make an angle Q with the axis of x, is the

straight line
y^^acotd.

9. The chord PQ meets the axis of the parabola of Fig. 19 in 0.

PM and QN are the ordinates of P and Q. Prove that AM. AN = A02,
by finding the equation of the chord in its simplest form.

10. The position of a moving point is given by the equations

x = vcos,a.t,

y= vs,v[ia.t-\gt^.

Interpret the equations, and prove that the point moves on a parabola
whose axis is parallel to the axis of y ;

/ if^ sin a cos a 'i^ sin'^a \whose vertex is at the point

whose directrix is the line y

2.9

and whose latus rectum is of length

§45. The Ellipse (e<l).

(i.)
To find its equation.

2v^ cos^ a

9

M

/
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Let P{x^ y) be any point upon the curve.

Then SP2 = e2pM2.

... x'^iA -e^)-2xd + y'^= -d'^.

/ ^\2 ^ d'^ d^ d^e^
•'• V l-eV +r-e2-(i_g2y2 i _72-(i _g2)2-

Now change the origin to the point (r—2' ^)» keeping the

axes parallel to their original directions.

The equation of the ellipse then becomes

^2 ^2^2

a;2 «/2
i-e. rrrr— 4- i^ = 1.

(l-e2) (l-e2)2'

,2 y2

Putting a2 =

and ^>2 =

(1
-

e2)2 (1
_

e2)

ri2e2

(1
-

^2)2

d^
1 - «2'

/Tr'2 .1*2

we have l + f^'^-^'
where ^2 = 0^2^1 _g2^.

In this form the origin C is called the centre of the curve,

since it bisects every chord which passes through it. This is

a;2 y2
clear, since if {x^, y^) lies on -2 + T2= 1> so does {-x^, -Vi)-

d de^
Also we notice that CS = .; 5 -d= ,

——. = ae,

and that CX=--^ = -.
I - e2 g

From the symmetry of the equation

a;2 y2

a2
+
62-J'

it is clear that there is another focus, namely, the point {ae, 0) ;

and another directrix, the line aj = -, with regard to the axes

through the point C.
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The axis of x is in this case called the major axis, and the

axis of y the minor axis. The one is of length 2a
;
the other of

length 2h. If h had been greater than a, the foci would have

lain upon the axis of y, and this axis would have been the major
axis. When a and h are known, the eccentricity e is given by

In the circle a—h^ and e = 0.

(ii.) The shape of the curve.

Since the equation involves only the terms x'^ and y^, the

curve is symmetrical about both the axes of x and y.

1—
2 )'

^® s®® ^^^^ ^ must lie between

- a and + a, and that, as x passes from - a to -\-a, the positive

value of y gradually increases from zero to b, and then diminishes

again to zero.

The curve is thus a closed curve, lying altogether within the

rectangle x= ±a, y= ±h.

This is also evident from the property of Ex. 3, p. 87, where it

is proved that the curve may be drawn by fixing the two ends of

a string of length la to the points S and S', and holding the

string tight by the point P of the tracing pencil.

(iii.) The equations of the tangent and normal at (Xq, y^).

Since +1^=1

a^'^¥ dx~

Therefore the equation of the tangent at {x^, y^) is

x-Xq a%'

X v
which becomes (x -Xo)-^ + {y- yo) )^

= ^
'>

^^(i VVn 1 • ^(? y^ -I
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It follows that the equation of the normal is

(»:-^o)|-(3'-%)|
= 0.

^0 Vo

EXAMPLES ON THE ELLIPSE

1. Trace the ellipses (i. ) Zx^ + 4y2= 12 ;

(ii.) 3(x-l)2 + 4(y-2)2=zl2;

(iii.) a:2 + 4y2= 8y;

(iv.) 4a;2 + 3y2=zl2;

und find the co-ordinates of the foci and of the extremities of the axes, the

length of the latus rectum, and the eccentricity of each.

2. In the ellipse -5 +^ =
1, show that the co-ordinates of any point

62

may be expressed as a;= a cos 5, y=&sind; and interpret the result

geometrically.

3. P is the point (a^i, y{) on the ellipse ^ + p = l. Prove that

SP= a + ea:i and S'P^a-eXj, and deduce that the curve is the locus of

A point which moves so that the sum of its distances from two fixed

points is constant.

4. The tangent at P meets the major axis in T, and PN is the ordinate

of P ; prove that CN . CT = CA2.

5. The normal at P meets the major axis in G. Prove that SG : SP= e,

And deduce that PG bisects the angle SPS'.

6. Prove that the middle point of the chord y= x+\ lies upon y= —-^x,

and that the middle points of chords parallel to y=mx lie upon the chord

62
'u= 7n'x, where mm' +—,

= 0.

7. If CP bisects chords parallel to CD, prove that CD bisects chords

parallel to CP (CP and CD are then said to be conjugate diameters) ; and

j)rove that the tangents at P and D form with CP and CD a parallelogram.

8. If P is the point (a cos 6, 6 sin 6), prove that CD is the line

a sin dy + h cos dx= 0,

4ind deduce that CP2 + CD2= a2 + h'\
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§46. The Hyperbola (e>l).

(i.) Tojiiid its equation.

Proceeding as in § 45 (i.), we obtain the equation

where we have written a^ for

a' 62

and 62 for ^^\, i.e. for a2(g2
_

i).

Also d is the distance from the focus S to the directrix.

It follows that CS = fte, CX = -, and that there are two foci

and two directrices.

The line joining the foci S, S' is called the transverse axis of

the hyperbola.

(ii.) The shape of the curve.

The form of the equation shows that the curve is symmetrical

about both axes. Also since i/^h^l—^-lX it is clear that x

cannot lie between - a and +a ;
since x^ = a^ll

+'j»), y can have

any value whatsoever.
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If we write the equation as

we see that, when x is numerically very great,
^

is less than, but

very nearly equal to -2; and that for all points on the curve

^ is less than — .

x^ a^

Also the positive value of y decreases as x
losses from - qo to

-
a, where it vanishes

;
and it increases w^ithou"Mimit from the

value zero at a; = a, as a; passes along the positive axis of x.

The shape of the curve is thus as in Fig. 21. The lines

y= ±~ X are called the asymptotes, and the curve lies wholly

between those lines
; while, as the numerical value of x gets

greater and greater, it approaches more and more nearly to these

lines, without ever actually reaching them.

(iii.) The equations of the tangent and normal at
(Xq, y^) are easily

shown to be
XX,

a2 62

and
|(^_^^)

+
|Q(y_y^)

= 0.

(iv.) The 'product of the perpendiculars from any j^oint on the

curve to the asymptotes is constant.

The asymptotes are the lines y = ±-x. Then if PM, PN

are the perpendiculars to these lines from the point (a^^j, y^),

h

PM=—;=^^, PN =

V'"-l -

Therefore PM . PN = "

.
,/^ = ^-^ ,

since ^_^ = 1.
a^ b^

Hence PM . PN = constant.
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When b'^ = a^, the asymptotes are at right angles, and the

eccentricity is ^^2. In this case, by taking the asymptotes as

axes, the equation x^-y^ = a^ is transformed to

2xy = a?.

This equation is of the form xy = c^, a relation which is of the

greatest importance in Physics. We could obtain an equation

of the same form for any hyperbola referred to its asymptotes

as oblique axes.

EXAMPLES ON THE HYPERBOLA

1 . Trace the hyperbolas :

(i.) 3a:2-4v2=12,

(ii.) 3(a:-l)2-4(y-2)2=12,

(iii.) x^-Ay'^= %y,

(iv.) 4a;2_3y2^i2;

and find the co-ordinates of the foci and of the points where each curve

cuts its transverse axis, the length of the latus rectum, and the eccentricity

of each.

2. Trace the rectangular hyperbolas :

(i.) xy=±4,

(ii.) 2/=l±^.,

And find the co-ordinates of the foci and of the points where the transverse

axis meets each curve.

3. Prove that the tangent at [x^, yo) to ^^e hyperbola xy= c^ is

^o-hyXo= 2c^, and that the point of contact bisects the part of the tangent
cut off by the asymptotes.

4. P is the point (ccj, y-^)
on the hyperbola whose equation is

-:^-j^
= \.

Prove that SP= exi-a, and ^'V = ex-^ + a, and deduce that the curve is the

locus of a point which moves so that the difference of its distances from

two fixed points is constant.

5. The tangent at P on the hyperbola -2-^ = 1 meets the transverse

axis in T, and PN is the ordinate of P. Prove that CN . QT = a".

6. The normal at P meets the major axis in G ; show that SG = eSP,
and deduce that PG bisects the angle SPS'.
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7. Prove that, in the hyperbola ^-|i = l, the middle point of the

1)2

chord y= x+l lies upon the line y = —^x, and that the locus of the middle

points of chords parallel to y =mx is the line y =mx, where mm =-2-

8. If CP and CD are two conjugate diameters of the hyperbola -j
-
f2
= 1

a"

(i.e. if each bisects chords parallel to the other), prove that if P lies upon
this curve, CD does not meet the curve, and that if D is the point where

CD meets the hyperbola —^-p^^
- 1

,

Cp2_CD2=a2_2,2,



CHAPTER VII

THE INTEGRAL CALCULUS—INTEGRATION

§ 47. Introductory.

In considering the motion of a point along a straight line, we
saw that, if

^ ^ y/
a

is the relation between the distance and the time, the velocity v

is given by ^,

^
In general, the problem of the Differential Calculus is as

follows : given the law in obedience to which two related

magnitudes vary, to find the rate at which the one changes
with regard to the other. The problem of the Integral Calculus

is the inverse one : given the rate at which the magnitudes

change with regard to each other, to find the law connecting
them. In other words, in the Differential Calculus we determine

the infinitesimal change in the one magnitude which corresponds
to an infinitesimal change in the other, when we know what

function the one is of the other. In the Integral Calculus we
determine what function the one is of the other, when the

corresponding infinitesimal changes are known. We have thus

to find the function of x, denoted by y, which is such that

The value of y which satisfies this equation is written
|/(a;)c?a;,

and is called the integral of f{x) with regard to x. When we have

found the integral of f(x), we are said to have integrated the

function. The process of finding the integral is called integration.
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/goa:
^ goa;

e«*dr=—
, since ^ =e«^.

a eta; a

3. Fill up the blanks in the following table :
—

/(^)
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It is thus evident that the equations

|f(x)=/(.)

and Y(z) =
^f{x)dx

represent the same thing, and that the fuller statement of the

second would be

F{x) + C=\f{x)dx.

Owing to the presence of the arbitrary constant, l/(a;)6?a; is

called the Indefinite Integral of f{x).
•'

The geometrical meaning of the constant of integration is that

there is a family of curves all having the same slope as a given
curve. The curves „ _

y^F{x) + C

are all parallel, when C is given different constant values.

§ 48. Table of Standard Integrals.

When integration is regarded in this way,* the first thing we
have to do is to draw up a list of the most important integrals.

This table is obtained from the corresponding results in

differentiation. Any result in integration can always be verified

by differentiation. Later we shall see that there are certain

general theorems on integration which correspond to the general

theorems of differentiation. These will help us to decide upon
the most likely ways of finding an answer to the question which

the symbol of integration puts to us
; namely, W^hat is the

fundio7i whose differential coefficient is the given exj^ression? To
answer this question is in very many cases impossible ;

but

practice soon makes it easy to recognise the simple cases which

can be treated with success.

* In Chapter VIII. we shall learn that there is another way of looking at

integration : that, in fact, integration is simply a summation, or more exactly

an integral is the limit of a sum : and that the symbol / of integration stands

for a capital S, denoting that a sum is being taken.
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The
follc^wiiig

is the table of Standard Forms :
—

(ii-)
J-^

=
log a;, since ^ (logic)

= -, {x>0) ^'

(iii.) [e'^dx =^6*^,
'

(iv.) m'dx =Trrr^'

a

\_

log a"''

(v.) lcosa;c?a; =sina7,

(vi.) Isinict^a; = -cosa;,

(vii.)
I

tan xdx =
log (sec x),

(viii.) Icosecajf/jc =log(tan^j,

(ix.) Isec^ccf/.^ =tanc):;,

(x.) |cosec-ir^a;= -cot.r,

^'^'-^Ivra ='"''1'''" ("'"'i) ('''^'''^

, .. , { dx 1
,
a; 1 ,x

(xii.) 1-^ s =-tan - or — cot ^ -,^

ja^ + x^ a a a * a

(xiii.) ~.^ r, =?rlog , {xr>a^)

(The logarithms are to the base e, and the angles are measured

in radians.)

The student is recommended to draiv up a corresponding table for
the cases where mx + n takes the place of x in this list.
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§49. Two General Theorems.

(i.) l(cw)c?.T
=

cpc?a:,

(ii. )
I
(m 4- v)dx =

I
« f^.?: + \vdx,

€ being a constant, and u, v functions of x.

In the first theorem, the left-hand side of the equation asks us

a question : What is the function whose differential coefficient

is 6'w?

The right-hand side tells us that the answer to this question

is clw6/ic.

We need only verify this answer.

To do so we differentiate cxudx.

We have
-j-c\udx=^- c^- \udx

= cu,

since differentiating an integral simply cancels the symbol of

integration and the dx.

It follows that I cw^cc = c I udx.I cudx = cU

In the second theorem, the left-hand side of the equation asks

us a question : What is the function whose differential coefficient

is u + v'i

The right-hand side tells us that the answer to this question is

prfa;-f
\vdx.

We need only verify this answer.

To do so we differentiate
pc?a;-|-

lt;<;?a:.

We have
-i-(

L(^«-|- Uc?x
j

=
-y-lwri?a:-|-^|i;c?.'c

= u + v.

It foliows that I
(tt + t;)c?«

= w c?a; -h U dx.
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Using these theorems we can readily integrate any ordinary

algebraical expression of the form

ftQx" + a^x""^ + . . . + a^_^x + a".

Also, if we call this expression /(a;), we can integrate

x-a

We have only to divide fix) by (a;
-

a), and integrate each term

of the quotient. If there is a remainder, the corresponding term

fdx ,
or log {x - a).

x — a

If there are several factors, the work in Algebra on Partial

Fractions comes to our aid. If the numerator is of the same or

of higher degree than the denominator, it must be divided by
the denominator before finding the partial fractions.

Ex. 1. \{ax'^ + 2hx + c)dx= a\x^dx + 2b\xdx + c\\dx'f'i {ax"^ + 26a; + c)dx= a x^dx + 2b xdx +
cj]

ax^ , o=—+hx^ + ex.

jdx
+
2J,

\dx

dx
2x-\

:.r + log(2a;-l).

3. /•^=a(_L_ _L)<i,J x'^-a^ J 2a \x-a x + aj

_J_ r dx 1 f

2aJ x-a 2aJ

2a ^\x + a)'

4. /sin2xdx=/—
^^-^dx

= -
/ dx-- / cos2xdx

dx
x + a

= ?i-lofir( ), when x>a.
2a ^\x + aj'

x_ sin2x

2 4
'

K r 9 J ri + cos2x^ X
5. /cos2xdx=/ ~ dx= -

J J 2 2

X sin X cos X

2^ 2
'

*
\l dx is usually written as \dx.

t This is one of the standard forms.

C.C. G
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6. Fill up the blanks in the following table :
—

fix)



THE INTEGEAL CALCULUS—INTEGEATION 99

The advantages of this method will be evident from the

following examples :
—

Ex. 1. I {ax + b)''dx. Vnt ax + b = u.

. c?rc 1

du~ a

f C \ I f w"+^ 1
Thus

/ [ax + by^dx = ii''-du= ~
/ u'^du = —, r- =

,
(ax + b)''+^

J J a a J a{7i+l) a{n + l)^

Similarly 2. / sin {ax + b)dx= -
j
s[nudu= = - - cos {ax + 6).

3. / ,. -. Put ax= u.
J sJa^x'^-b'^

dx_l
du~ a'

Thus f_iL==f_J_irf^=i/'_i^

= -log{u + 'Ju^-b'^)

= ~
log {ax + s^a^x'-b"^).

I^^^dx. Put a;= e^
J X

. dx

Thus
[ 1^-

dx= [^ e« du =
ju

du= i «2

=
|(logx)2

5. [ ^^. Putcc = cos^.
•/(1-cc)

dx

dx
de=-''''^'

Thus ( ^^= = [-—J-—_ (
- sin

J {l-x)Jl-x^ j (l-cos^)sm6»'

sin^

:COt2

\-x
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6. Integrate the following expressions :
—

(a) a;"-i(aa;" + 6) ; xs]a? \- x^
-, Ya^^'

^^^ x^Ax + 2 '
0:^ + 2^+2

' P^^*^"^ ^*+^==^'-

^""^
ax^ + 2bx + c'' ax^+2hx + c

P^^^^"g ax + h = n. (aOb^)

/s\ 1 ^ + 2
^°'

I o A ^? / o ,
=> putting a; + 2= w.

slx^ + ^x+ 5 \/a;2 + 4a; + 5
^ *

(e) - ^ ^
=:r

;
——

» putting aa; + &=:?«. {ac>h'^)
\/ax^ + 2bx + c slax^ + 2hx + c

^ ^ ' '

(f) sin^xcos^a; ; r—.—-; cotar, putting sina;= w.
(t ~T~ Sin X

iv) -5 o
—

,70 • 9
-

;
—

s
—r—ij-

> putting tanx = tt.
a^cos^ar + ft^sin^.c cos^ajsm^a; ^ ^

§ 51. Integration by Substitution—continued.

Although there are certain general principles that guide us

in the choice of a suitable substitution, a second form (B) of

the theorem of § 50 will often suggest what the transformation

should be. We have seen that

\fm)]ji[m]dt
=
^f(x)dx,

where x =
<f>{ty

We may write this result in the form

(B) [f[H^)]^^[Hx)]dx=^ [f{u)du, where u = <j>{x)*

as the particular symbol we employ is immaterial.

Thus in the case of the examples of last article we obtain our

results immediately—

.g, (i. ) [{ax + hfdx = -
\iax + hf^ {ax + h) dx

= - I u'^duj where ax + h = u,

=—
..^ {ax + 6f+1.

71+1 a a{n-\-l)

* This can be verified by starting with

\ f{u)du,

and putting w=0(a;), as in (A).
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(ii. ) I sin^ic cos xdx = sin^ic— (sin x) dx

= I uHu, where ^\nx = u,

1 •

3=
^ sin^a;.

= -
I
—

,
where i* = 1 + x^,

5J u

= i
log (1+0^5).

o

(iv.)

j?^^dx
= logf(x).

In this way it is easy to see that

since the integral may be written as

*.6. - —
,
where u = ax'^ + 2bx + c.

2J ?*

Also
f -^-4?; = f , j:r^ r, ^ (ax + b) dx
J ax^ + 2bx + G J (ax + bf + ac-b^ dx^ '

=
I -s 775^^5 where u^ax-vb.
ju^-hac-b^

and this is one of the standard forms.

It follows that any expression of the form

Ix + m
ax^ + 2bx^-c
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can be easily integrated, since we can rewrite the numerator as

-p{ax-\-b) + q, ^

where P = -
;

= •

a a

If higher powers of x occur in the numerator, we must first of

all divide out by the denominator till we obtain a remainder of

the first degree or a constant.*

The expression , „ ,
=- may be reduced in a similar way.^

s/ax^ + 2bx + c
^ ^

Ex. Integrate the following expressions :
—

(i ) _J_ •
1 1 37+1 2a; + 3

x^
. a;2-a:+l. x-\

. x^-\-x-\-\

(ii.)

x^±V a;2 + a; + l' x^-S.'c + G' (x- l)(a;-2)'

1.1 1 x+\ 2x + S

s/x^±4' \/a%2±?,2' V4a;2 + 4a;±3' \/4a;2 + 4x±3' \/5 + 4a;-x2'

§ 52. Integration by Parts.

The second important method in integration is called integra-

tion by parts, and can be used only when the function to be

integrated is the product of two functions, one of which can be

expressed as a differential coefficient. This method follows at

once from the rule for the differentiation of a product.
*

Q. d
,

. dv du

U/Jj U/Jj UjJU

we have uv=
\(uj^ +^;7~) ^^' V *^® definition of integration,

^^/idx
+
^vfUx,

by §49.

It follows that
|i*-^G?a;=

wi; - h
dv , ^ du -.

W^rdx.
dx
n 7

This result will only be of use if \v-j-dx can be more easily
- -

Cdv^~
J ^^

J dx
evaluated than \u-^dx.

*When the factors of the denominator are real, the method of Partial

Fractions should be employed.
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For example—

(i.) \x\ogxdx = A\ogx^{x^)dx

=
^(x'^ log

flJ
-

I x^^ (log X)
dx^

= -f aj^logo;- Li

V 21
^'=

-^[xnogx-^

=
^(2log.-l).

(ii.) \x^cosxdx=\x^j-(smx)dx

= x'^&inx- I sin a; -j- (x'^)
dx

= ^2 sin ic
- 2 1 sin a: a; c^a;

Xj- (cos a:)
c?«

= a;2 gin /^ ^. 2 f :^ cos X -
I
cos x j- (x) dx

= a;2 sin a; + 2 (x cos x - I cos x dx

= X- sin x+2x cos a;
- 2 sin a;.

In both of these examples this artifice allows us gradually to

reduce the integral to one of a simpler form.

In such cases, where powers of x are associated with a

trigonometrical, exponential, or logarithmic term, it is of great

value. "^

An important expression which can be integrated by this

method is \/a^ - x^.

* Cf. p. 105; Exs. 11, 12, 13, 14, and 15.
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We have

I
sja^ - x^dx = I sja^ -x^-^-x dx

X -rj-sjw^ -x^dx
dx

= Xs/aF-^ + I
dx

= xja^ -x^ -
I
-

».2 _ ^'2

dx
sja^-x^

dx= xsla^ - x^ - f v/a2 - x'^dx + a^
f-^

.-. 2
I
\/«2 -x^dx = xsja^ -x^ + a^ sin

" ^

.-. fx/a^-x^dx^^v/a^-x^+^sin-i-.

The expressions \/x^ - a^ and JaF+i^ can be integrated in the

same way.

Ex. Integrate the following expressions :
—

x^ log X ; a;V ; x tan~^x ;
x^ sin ax ; sjd-x^ ; Jx^ - 9.

EXAMPLES ON CHAPTER VII

1. Integrate the following expressions :
—

.. . .... 1 1 + a; 07 + 2
(1.) {x-aY, -===., -—

,
—— .

siax + h six x + 6

(ii )

1 2a;- 1 a:^ x^

a;(l-a;)' x^-Zx + 2' a;2 + a;+l' x'^-x+l'

(iii.)

1 2a; -1 a:+l

slx{\-x) v/a;2-3a; + 2 sIW+xTl

2. Integrate the following expressions by parts :
—

8in~^a;, a;2tan~^a;, a;^ sin 4a;, a;^ cos 3a;, a:*" log a;, aj^e"*

3. Prove that _l_=:_i £Z^
x^ + l 3(a; + l) 3(x2-a;+l)

and hence integrate the expression.

4. Prove that
1 111

(a;+l)(a;-l)''^ 2(a;-l)2 4{a;-l) 4(a;+l)

and hence integrate the expression.
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5. Prove that — — = -,
{x-2){x-S) x-S x-2'

and hence integrate the expression.

6. Integrate the expressions a;\''l +a; and ——= by putting x+l=u\
^\l + x

7. Prove that / t-
— — -tan~^" (put a;= sin^).

J {i+x^)-Jl-x' sl2 sll-x''

8. Integrate the following trigonometrical expressions :
—111 1 sin a;

sin ^' sin {6 + a)' sin d + cos ^' cos^dsja^ tsm^f+h^' cos"^a;(4 tan^a; + 3)*

9. Show that, when a^ > b"^,

/ r = - tan M A/ rtan-:r .

Putct + 6cosa: into the form (a + 6)cos^^ + (a-6)sin2^.

Also integrate the expressions1111
5 ± 4 cos X 4 ± 5 cos x 3 ± 2 sin x 2± 3 sin x

10. Prove, by integration by parts, that

,. , /* „^ , , 6 sin 6x + a cos 6a; ,

(i. ) / e**^ cos hxdx=
^.^ ^ ^^.^

e*

(ii. ) / e"^ sin hxdx _
-

"'""^^ ^^v.^^.^.^ ^^

62

a sin bx — b cos 6a;

a^ + b-'

11. Prove, by integration by parts, that

cos 6 sin"-^^ n-1f • „n^n cos^sni"-!^ 71-1 r .

I ain"ddd= + /sin"-^
J n n J

^ddd,n n J

and hence show that

r . . - ,- sinS^cos^ 3 . ^ ,3^
/ sin^^fZ^^ J rrsm^cos^-f^^.

12. Prove, by integration by parts, that

r -,^ sin^cos"-!^ (71-1) C ^^ ,^

J '^ n J
'

and thus obtain the value of / coa^ddd and / cos^ddd.

13. Prove that \x^e^dx:=x'^e^-n\x^^-^e^dx,

and_explain how this result may be used in evaluating such integrals as-

ixh^dx, jxh-^dx, etc.
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14. Prove that x''-'^ {log x)'^dx= I y"'e''^di/,

where x= e^, and explain how this result may be used in evaluating

integrals such as r r

I a;2(log x)^dx, / a;-2(log x)'^dx.

15. Prove that

r . ,
a;" n C -.

I
x^' sin mxdx= cos mx ^— / x'"~

^ cos mxdx
J *'i ^ j

x'^ n ^ . . n.n- ] C= cos 771X H—r.a:"--' Sin mx „— / x^-^sm mxdx,m m^ m^ J

and show how this may be used in evaluating such integrals.
* Obtain a

corresponding result in the case of

/ x^ cos, mxdx.

* Examples 3, 4, 5 are cases of the use of the method of Partial Fractions
in the integration of algebraic functions ; 11-15, of the method of Successive

Jteduction. Cf. Lamb's Infinitesimal Calculus, §§ 80, 81.



CHAPTER VIII

THE DEFINITE INTEGRAL AND ITS APPLICATIONS

§ 53. Introductory.

In the last chapter we have considered the process of inte-

gration as the means of answering the question : What is the

function whose differential coefficient is a given function ?
,
As

we have already mentioned, there is another and a more im-

portant way of regarding the subject, in which integration--^,

appears as an operation of summation, or of finding the limit ^
of the sum of a number of terms. We shall examine inte-

gration from this standpoint in the following sections.

§ 54. Areas of Curves. The Definite Integral as an Expression

for the Area.

Let y =f{x) be the equation of an ordinary continuous curve,

and let us consider the

area enclosed between

the curve, the ordinates

at Po(xo, ^o) and P(«, y),

and the axis of x.

We assume, to begin

with, that PqP is above

that axis.

This area is obviously

a function of x, since to

every position of P there

corresponds a value of the

area.

Let A stand for the

area P^MoMP; A-i-SA for the area P^M^NQ; and let Q be
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the point {x + 8x, y + 8y). Then if the slope is positive from P
to the point Q, we see by considering the inner and outer

rectangles at P and the element of area there, that

y8x<8A<{y + 8y) 8x.

oA
It follows that y<-^ <y + ^'

If the slope is negative, the signs are reversed.

Hence in each case, when we let 8x approach its limit zero,

we have , .

dA
J.,

.

Thus if we write 'P{x) for l/(a;)c?a:,
and if C stands for an

arbitrary constant, we have ^

A =
F(cc) + C.

Also, since A vanishes when a; =
ccQ,

C= -^{x^^.

.-. A = F(x)-F(ic„).

This expression F(a;) -'F{x^

is an important one, and the symbol

f{x)dx

is used to denote it.

I f(x)dx is called the definite integral of f(x) with regard to x

Jxq

bet2veen the limits x^ and
x-^ ,

and its value is obtained by subtracting

the value of the indefinite integral \f{x)dx for x = Xq from that far

x = x^.
•'

With this notation the area of the curve y =f{x) included between

the ordinates at {Xq, y^) and {x^, y^), the axis of x and the curve is

fXi
f{x)dx.

Xq

It can be shown by a similar argument, or otherwise, that if

the curve cuts the axis between the limits x^ and
iCj,

the definite

integral gives the algebraical sum of the areas, those above the

axis of x being taken positive, those below the axis negative.
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Ex. 1. To find the area of the sine curve

y= asinbx

from x= to x=^'
2o

The required area = I a sin bx dx
Jo

\

r «
7. 1''= - r COS OX A

~b

This notation
[F(a;)]^^

for F{x-y) -¥{xq) is useful in evaluating Definite

Integrals.

2. To find the area of the curve

y=^as\n'^bx

from x= to x= -r'
b

The required area = / asm^bxdx
Jo

= n \ (
1 ~ cos 2bx) dx

_ a r sin 2bx~\ *

-2r"^2r"Jo
_aTr
~2b'

3. To find the area of the part of the parobola y^= 4ax cut off by the

lines x= Xq and x = x-^.

Here the required area = 2 / \/4a:c dx
Jxq

rxi

— 4\/a / \lxdx
Jh

,-r2 3-1^1

It follows that the area cut off by any ordinate P'NP is
^

of the

rectangle upon PP' as base, with AN for its altitude.

4. To find the area of a circle of radius a.

Let the equation of the circle be

x^-\-y"
= a?.

Then the required area= 4 / sla^ - x^ dx.
Jo

This integral can be obtained by substituting

a;= asin^. [Cf. p. 115.]
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Or we may quote the result obtained above [§ 52] :

X
I

Cb^ X
\'a^ -x'^dx = n va^ - -v^ +

"2"
sin-i - •

Using this result, the area of the circle becomes

2 x\la^-x^ + a^sm-^- :

L "Jo

5. Prove that the area of the ellipse -., + 7 .,
= 1 is irah.

6. Prove that the area between the hyperbola

xy= c\

the axis of x, and the ordinates at {Xq, y^), [x^, y{) is

^x_,

, Xn

when Xq and x-^ are both positive.

7. Prove the following :
—

•^ dx

M^

(i.

(ii.

(iii.

(iv.

(V.

(vi.

(ii.

(iii.

(iv.

(V.)

/.

P dx r- P

sin^o: dx — -= I cos^aj dx.
4 Jo

dxp dx _ TT _ p dx

Jq a^ sin^x + b^ cos^x~ 2ab~ Jq a^co8^x +

I
sin~'^xdx= I dcosddd—---!.

Jo Jo ^

Jo sla-x

r^ dx _ TT

J\ xs/x" - i 3

8. Prove that when w and n are positive integers

(i

Jq 2n . 2n-2...4.2 2 Jq

sm''^dcos'"ddd = / sin'™-2^cos'*^c?^.
Jo m + nJo

l\in^eGosHde
=

y^-

IT V

r sin6 d cossddd= ,^'^'\^ I

'

cos^ 6

Jo 14. 12. 10 Jo

5t

212'
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In cases where integration is not possible there are various

approximate methods of finding the area. The expressions for

the area of a trapezium or a portion of a parabola give the

trapezoidal and parabolic rules,
^ and we shall see more fully in

§§ 55-56 how the inner and outer rectangles may be applied.

The value of a definite integral may also be obtained by
mechanical means by the use of different instruments, of which

the planimeters are perhaps the best known.

Ex. Evaluate the following integrals by the trapezoidal method, i.e.

find the sura of the inscribed trapeziums corresponding to the divisions

named :
—
rl2

(i.) / x^dx, dividing the interval into 11 equal parts, and compare

with the result of integration.

Answers, 577^ ; 575§.

(ii). I oosxdx, by dividing the interval into 6 equal parts, and
Jin"

compare as above.

Answers, '0148; -0149.

55. The Definite Integral as the Limit of a Sum.

In the last article we have shown that the symbol I /W^^
represents the area be- ^ -^^

tween the curve

the axis of x, and the

bounding ordinates.

We shall now obtain

an expression for this

area as the limit of a

sum, and thus see in

what way the process

of integration may be

viewed as a summa-

tion.

Let PqPj be any

portion of the curve in which the slope remains positive.

Fig. 23.

* Cf. Lamb's Calculus, § 112 ; Osgood's Calculus, p. 406
; Gibson's Calculus,

p. 329.
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Divide the interval M^Mj into n equal parts Sx, so that

n^x =
x-^ -Xq :

erect the ordinates m-^p-^, m^p^, etc.; and construct inner and

outer rectangles as in Fig. 23.

Then the difference between the sum of these outer rectangles

and the sum of the inner rectangles is («/i-«/o)^^5 ^^^ ^^i^ '^^y

be made as small as we please by increasing the number of

intervals and decreasing their size.

Also the area of the curve lies between these two sums.

Therefore this area is the limit of either sum as & approaches
zero.

Now the sum of the inner set of rectangles

=
[/(^o) ^^ +/(''^o ^^^)^x'^ -' +f{^Q + n-l . 8x) Sx]

= 2 f{xQ + r8x)8x.

But the area is [F (x-^)
- F

(Xq)] where F(x)=\f{x)dx, and we

f(x)dx.
Xo

tX]

r=n-l

f{x) dx = 'Lt 2 /{Xq + r 8x) 8x
Xo Sx->0 r =

nSx=(xi-Xo)
xi

= Lt ^f(x)8x, written shortly.
Sx -^0 Xq

It is easy to remove the restriction placed upon f{x) that the

slope of the curve should be positive from P^ to Pj ;
and to show

that this result holds for any ordinary continuous curve whether

it ascends or descends, and is above or below the axis in the

interval Xq to
x-^.

It is only necessary to point out that in the case of such a

portion of the curve y=f{x) as is given in Fig. 24, the area of the

portion of the curve marked II will appear as a negative area,

and, if I f{x)dx ^ F (x),

^f{x)dx, or [F(5)-F(a)],

is equal to (I)
-

(II) + (III).

The great importance of the Integral Calculus depends upon
the fact that many geometrical and physical quantities {e.g.
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volumes and surfaces of solids, centres of gravity and pressure,

total pressure, radius of gyration, etc.) may be expressed in

terms of the limits of certain sums. The problem of obtaining

these quantities is thus reduced to a question of integration.

1 1
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For example, in the case of the parabola

we can obtain the area, or the Definite Integral, as follows

r=0

=&[V + (x^ + Sx)^ + (x„ + 2&)2 + («„ + (n
-
1)&)2]

using the results for

-
.

1 + 2 + 3+... +(7i-l), and 1^ + 2^ + ... +{n-\y.

Therefore, since TiSic =
(ft'i

-
a;^)),

r=n-l

j^Sx(x,
+ rSx)^

= x,^x,-x,) +
x,{x,-x,y-(^l-lyl(x'^'--x,y(l-l^(-2-lyr=0

r=n— 1

Lt 2
8x(iro + r8a-)2

fix->0 r^O

X.'^-Xr,

Xo

Ex. Prove in the same waj^ that

"2jn

f-^1

/y 3 _ 7. 3

and

Jo »w

r* 1

.'0 a

f{x)dx.
Xq

The following properties of the Definite Integral may be

deduced from either of the definitions of this symbol :
—

I.
f{x)dx=-\ f(x)dx.

JXq JXi
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11. rf{x)dx= { f{x)dx+rf{x)dx.
Jxq Jxo J ^

III. The integral of an even function between the limits - a and

+ a = twice the integral of the function between and a.

2 „

fa

C^ 2
x^dx = 2\ xHx =

-^a-

IV. The integral of an odd function between the limits -a and

+ a is zero.

sin^Ode^O.x^dx = 0, si

-a J -^

Similarly fsin"*^ cos^'^-^'O dB = 0,

m, n being positive integers.

Y. In applying the method of the "change of the variable"

to the evaluation of definite integrals, we need not express the

result in terms of the original variable. We need only give

the new variable the values at its limits which correspond to the

change from Xq to
x-^

in the variable x,* care being taken in the

case of a many-valued function that the values we thus allot are

those which correspond to the given change in x.

E.g. I
\/a

Jo

-n

x^dx

cos^ddS, putting x = a sin 0,

(1+ cos 2(9)^(9

4>-"):=4'-
*If we integrate / sinxdx b}' the substitution sinx =

2/^ i* appears at first
Jo

that we obtain zero instead of 2 for the result. It is not hard to trace the

reason for this discrepancy, and this example shows that in the use of this

method particular care has to be taken.
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GEOMETRICAL AND PHYSICAL APPLICATIONS OF INTEGRATION

§ 58. Application to Fluid Pressure.

The determination of the pressure of a liquid upon a plane

surface shows more clearly than many other examples the real

meaning of integration.

Let us take the simplest possible case. Suppose we have a

rectangular trough, resting upon a horizontal plane, and that Ave

fill it full of water. There is a certain force pressing out the

ends of the tank due to the weight of the water. We shall find

the amount of this force for one end : in other words, the whole

p-essure of the water upon an end of the trough.

The whole pressure is made up of the pressures distributed

over the surface considered, and another problem is to find

where the resultant pressure acts. The point at which it acts

is called the Centre of Pressure.

Fig. 25.

Let the rectangular section be of breadth b ft. and depth a ft.

(Cf. Fig. 25.) We take the line AD, which lies in the surface of the

water, as the axis of y, and the vertical line AB as the axis of x.

We learn from Physics that the pressure per sq. ft. at a depth
X ft. below the surface of the water is wx lbs., w being the

weight in lbs. of a cubic ft. of water. [1 cub. ft. of water

weighs 1000 oz. or 62J lbs.]

Suppose that the rectangle (cf. Fig. 25) is divided into n equal

strips by lines parallel to the axis of ^, the thickness of each

strip being 8x.
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Let
a-j, x^^ x^, ...x^^ be the distances from A to the points

where the lower edges of the strips cut the axis of x.

Let 8F^ = the pressure on the ?"' strip.

Then we have wx^ h8x>hV^ >0,

wx^ b8x> 8P2 > wx-^^
b Sx,

wx^^ b8x> SP„> wx„ _ib8x,

since the actual pressure on each strip is greater than what we

would obtain if we were to take the pressure as uniform over it,

and equal to that at its upper edge : also it is less than what we

would obtain if we were to take the pressure as uniform over it,

and equal to that at its lower edge.

Now the difference between the sum of the numbers in the

first column and those in the third is equal to

wx^b8x or w8xx the area of the rectangle.

It follows that when Sic^-O, n8x remaining always equal to a,

the two sums become equal in the limit.

But the actual pressure, »

8Pi + SP,+ ...+8P„,

lies between these two sums.

It follows that this pressure, which we shall denote by P, is

equal to the limit whei^ 8x->0 of either sum.

In other words,

P = Lt 2 mc,. . &5a; = I wx. bdx = \ww^b.
6a;^.0 r= J

It will be noticed that the pressure is equal to the area of the

surface immersed multiplied by the pressure at its Centre of Gravity,

a theorem which can be shown to be true in general.

We take another example, where the section is not rectangular.

Let the section of the trough be a semi-circle, the diameter lying

in the surface of the water, its length being 2a.

In this case it is convenient to take the origin at the centre,

and the axes of x and y vertical and horizontal.
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As before, we divide the section into strips parallel to the axis

of y, the breadth of each strip being Sx.

Let QNQ' be the upper edge of one of these strips. Let

ON = a; and QN =
y. [Cf. Fig. 26.]

Q i^-y)

Let 6P = the pressure on this strip.

Then we have

1w {x + 8x)y8x>8'P > 2ivx (y + Sy) Sx.

If we were to add the terms in the first and third columns

obtained in this 'way, we would find that the limit of each sum

would be the same, when 8x-^0, n8x remaining equal to a.

Also the pressure P lies between the two sums.

It follows that P is equal to the limit of either sum, and in

finding this limit we can omit the terms involving SxSy. The
sum of these terms vanishes in the limit.

Thus P = 2i^
I xydx, where y = Ja^ -

x'^,

Jo

= 2w\ xja^-x'^dx

=
2w\_-l{a^-x^~fX

When we have obtained the position of the c.G. of a semi-

circle (cf. p. 124), we shall see that the above answer agrees
with the general theorem to which we have referred.



AND ITS APPLICATIONS . 119

These results can easily be extended, and a general formula

obtained. However the student is advised, at this stage, to

work out such examples from first principles. When he has

grasped the meaning of the argument used in the above dis-

cussion, it is unnecessary to write down the inequalities on

which it depends in full. For example, in the case of the semi-

circle, it would be sufficient to say that

6P = 2wx . y^x, to the first order
;

so that on integrating over the semi-circle

(a
xydx:

Ex. 1. A water main 6 ft. in diameter is just full of water. Show that

the pressure on the gate that closes the main is over 2| tons.

2. A vertical masonry dam is in the form of a rectangle 200 ft. long at

the surface of the water, and 50 ft. deep. Show that when full it has to

withstand a pressure of nearly 7000 tons.

3. The bank of a reservoir is inclined at an angle of 60° to the

horizontal. If the depth of the water is 30 ft., show that the normal

pressure on the section 100 ft. long is over 1400 tons.

§ 59. Application to Areas in Polar Co-ordinates.

When the equation of the curve is given in polar co-ordinates,

the area of the sector bounded by ^ = ^o ^^^^ B =
6^ can be

shown to be

Lt 2 (.rm
se->o e=eo\-^

with the same notation as before. Hence if the curve is r=f{d),

the sectorial area is

l[\f{d)fdd.

Polar co-ordinates are often used in finding the area of a loop

of a curve.

For example, the lemniscate

r^ — a^ cos 26

has a loop between 6= - - and 6 = -r'

,

4 4
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1 r^
The area of this loop = -

^
r\id

cos 26 dd.

.'. the area of the loop = 612^008
2(9^(9 (Cf. § 57, III.)

-<^t
_a2~

2
*

Similarly, in the Folium of Descartes, whose equation is

x^-\-y^
—

Saxy,

there is a loop in the first quadrant.

Using polar co-ordinates we find that the area of the loop

I!.
Hd

I pf3acos^sin(9
)2^^

cos^^ + sin^^ I

I cos2^sin2^
^^

IT

9 f^=
2^Jj,(cos3(9

+ sin3(9)2

=
^'(-1^73!

~
2

*

o
Ex. Prove that the area of the cardioide r= a{l -cos^) is

^^ra^.

§ 60. Application to Lengths of Curves.

The length of an arc PqPj of the curve y=f(x) may be

regarded as the limit of the sum of the different chords inta

which PqPj is divided by the ordinates at m^, Wg, ... (cf. Fig. 23).,
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Hence

arcPoPi = Lt /' 'J{W+"{^W
Sx -> X = Xo

5.c->0 x=x, > VW

-i:v-(i)"-f::v'*||)"*.

since Jl + fJl-\ will differ from Jl + (-l\ by a very small

quantity when 8x is very small, and the sum of these differences

multiplied by 8x will vanish in the limit.

If polar co-ordinates are used, we obtain the two expressions

since the chord is \/{8ry^ + {r86)'^ to the first order.

Owing to the presence of the radical sign under the sign of

integration, the problem of finding the length of the curve has

been solved in only a limited number of cases.

Ex. 1. Prove that the length of the arc of the parabola 7/^
— 4ax from

the vertex to the end of the latus rectum is equal to a[>y2 + log(\/2 + 1)].

2. Prove that the length of the cardioide r= a{l
- cos^) is 8a.

§ 61. The Volume of a Solid of Revolution.

Let the solid be formed by the revolution of the curve

about the axis of x.

We wish to obtain the volume contained between the planes

x = X(^ and x = Xy
We suppose the interval Xq to x^ divided up into n equal parts

8x, as in § 55
;
and we take the sections of the solid by the

planes perpendicular to the axis at these points.*

* We might also proceed as follows :
—

We have Try^5x^dV^'ir(y+ 5yf Sx,

V standing for the volume up to the section considered, and SFfor the increment

of volume.

Thu, |^=.y^.

The rest of the argument presents no diflaculty.
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If we let inner and outer discs take the place of the inner

and outer rectangles of our former argument, it readily follows

that the required volume is given by
r=x-l

Lt 2
TTij^^Sx,

'/I Sx=Xi —
Xo

where y^ =/(^o + ^ ^^)-

Thus the volume = tt I y^dx = it I
\^f{x)Ydx.

JXa JXo

When the axis of y is the axis of revolution, the area of the

section is irx'^ instead of iry'^, and the volume becomes

pi
•

I
xHy.

JVn

Ex. 1. The portion of the parabola i/^
= 4£ix from the vertex to the

point Vix, y) revolves about Ox. Prove that the volume of the cup we
thus obtain is lairx^.

2. Obtain the volume of a sphere by considering the rotation of the

semicircle x^ + y'^
= a'^ about Ox.

3- Find the volume (i.) of a right circular cone, and (ii.) of a cone in

which the base is any plane figure of area A, and the perpendicular from
the vertex upon the base is h.

4. Prove that the volume of a spherical cap of height li is irh^
(

*'
-

o
where r is the radius of the sphere.

^

§ 62. The Surface of a Solid of Eevolution.

It is easy to show that the surface of a right circular cone

whose vertical angle is 2a and whose generators are of length I

is ttP sin a. We can deduce from

this that the surface of the slice

of a cone obtained by revolving
a line PQ about Ox is equal to

27r . PQ . NR,
where NR is the ordinate from

X the middle point of PQ.
O N

Suppose then that an arc PqP^
Fig. 27. c ^ j"/ \

01 the curve y=j{x) rotates about

Ox. The area of the surface generated by P^^P^ is the limiting

value of the sum of the areas of the surfaces generated by the

•chords into which we suppose this arc divided. Thus the area of

the surface generated by P^Pj
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Sx-^0 x=Xo \ -^ /
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We add some illustrative examples :
—

Ex. 1. The Centre of Gravity of a Semi-circular Plate.

Take the boundary of the plate along the axis of y, and suppose the

semicircle divided
b}'^

a set of lines parallel to that axis and very near one

another. The C.G. of each of these strips

PQ' lies on the axis of x, and therefore the

C.G. of the semicircle lies on Ox.

We thus have
Lt Sx 8m

— Sm-*0
X= M

I
j xydx

x'dx—
r, / xs/a^

ra-Jo

and y 0.

2. The Centre of Gravity of a uniform Solid Hemisphere.

Let the axis of x be the radius to the pole of the hemisphere, and suppose

the solid divided up into thin slices b}^ a y
set of planes perpendicular to this axis.

Then the C.G. of each of these slices

lies on this axis, and therefore the C.G.

of the hemisphere does so also.

Also we have

TTxy^dx

2
3

x^dx

=24^(<'1II-[t].
_ 3 /I n

3
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3. Prove that the C.G. of any cone or pyramid upon a plane base is one

fourth of the way up the line from the vertex to the C.G. of the base.

4. Prove that the C.G. of the upper portion of the ellipse -2+^
4?;

'

at the point ( 0, —-
)

1 is

§ 64. Moments of Inertia.

The moment of inertia, I, of a set of particles m^, m^, ... with

respect to an axis from which they are distant 7\, r^, etc., is the

expression

m^r-^^ + m.f^^ + ...
,

and in the case of a continuous solid body we may express this as

1= Lt 2r26m.
Sm -^

The radius of gyration k is defined by the equation

l = MkK

In many cases we can obtain the values of I and k'^ by the

use of the methods of integration we have been discussing.

We add some illustrative examples :
—

Ex. 1. To find the radius of gyration of a thin rod of mass M and length

21, about an axis at right angles to the rod and passing through its centre.

Here 1= Lt 'Lx^bm
Sm^-O
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5. 'By substituting a:' = acos^, y — h sin 6, show that the perimeter of

the ellipse of semiaxes a, b is given by 4a l s!\ - e^ s\n^ d . dd
,
and deduce

that for an ellipse of small eccentricity the perimeter is approximately

6. Find the lengths of the following curves :
—

(i.) The equiangular spiral r= ae^^°^* from ^ = to d — lir.

(ii.) The spiral of Archimedes r= ad from ^ = to d = 2ir.

(iii. ) The catenary y= -
/ €« + e «

]
from x = to x= a.

(iv. ) And show that the length of a complete undulation of the curve

y= osin-
a

is equal to the perimeter of an ellipse whose axes are 2\la^ + h'^ and 2a.

7. Find the volumes of the following solids :
—

(i.) The solid formed by revolving the part of the line x-\-y=\ cut off

by the axes, about the axis of x, and verify your result by finding the

volume of the cone in the usual way.

(ii.) The spheroid formed by rotating the ellipse 9a:2 + 162/"=144 about

the axis of x.

(iii. )
The cup formed by the revolution of a quadrant of a circle about

the tangent at the end of one of its bounding radii.

(iv. )
The cup of height h formed by the revolution of the curve a'^y

= x'^

about the axis of y.

(v.) The ring formed by the revolution of the circle {x -a)' + y^ = h'^

about the axis of y.

(vi.) The ellipsoid ^,
+^ +

^^=1.

And show that if Sq, Sj, Sg are the areas of three parallel sections of a

sphere at equal distances a, the volume included between Sq, S.2 and the

spherical boundary is -
(Sq + 48^ + Sg).

o

8. The ellipse whose eccentricity is e rotates about its major axis.

Prove that the area of the surface of the prolate spheroid thus formed is

rb(^h
+

l,

9. The catenary y= -le'^ + e "
j
rotates about the axis of y ; prove that

the area of the surface of the cup formed by the part of the curve from

a;= to a;= a is 27ra"( 1—
j.
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10. The cardioide ?^= a(l-cos^) revolves about the initial line; prove

that the surface of the solid thus formed is — ira^.
5

11. Find the C.G. of the following :
—

(i. )
A thin straight rod of length I in which the density varies as the

distance from one end.

(ii.) An arc of a circle of radius a which subtends an angle 2a at the

centre.

1.

(iv.) A circular sector as in (ii.).

(v. ) The segment of the sector of (iv.) bounded by the arc and its chord,

(vi.) A thin hemispherical shell of radius a.

12. Find the moments of inertia of each of the following :
—

(i.) A thin straight rod, about an axis through an end, perpendicular
to its length.

(ii. ) A fine circular wire of radius a, about a diameter,

(iii.) A circular disc of radius a, about an axis through its centre

perpendicular to the plane of the disc.

(iv.) A hollow circular cylinder of radii a, h, and height h, about its axis,

(v. )
A sphere of radius a, about a tangent line.

(vi.) (a) A rectangle whose sides are 2a and 2o, about an axis through
its centre in its plane perpendicular to the side 2a ;

(/3) about an axis through its centre perpendicular to its plane,

(vii.) An ellipse whose axes are 2a and 26,

(a) about the major axis a
;

(/3) about the minor axis h
;

(7) about an axis perpendicular to its plane through the centre,

N.B.—The case of the circle follows on putting a — h.

(viii.) An ellipsoid, semiaxes a, b, c, about the axis a.

jS^.B.—For the sphere a = b = c.

(ix. ) A right solid whose sides are 2a, 2b, 2c, about an axis through its

centre perpendicular to the plane containing the sides b and c.

N.B.—Routh's Rule for these last four important cases can be easily

remembered :
—

^sum of squares ofperpendicular\
Moment of Inertia about an axis\ _ \ semiaxes )

of symmetry j
-'^^^^

3, 4, or 5

The denominator is to be 3, 4, or 5 according as the body is rectangular,

elliptical, or ellipsoidal.

Cf. Routh's Rigid Dynamics, vol. i. p. 6.



APPENDIX

Alternative Proofs for the Differentiation of x^^, e^ and log x.

I. The Differential Coefficient of x'\

Let y= x"'.

Then y-\-hy
= {x^ hxf

^x ^x

But by the Binomial Theorem, when ^ < 1,

(1 ^hf=\ +nh-^ '^'!'~^ ¥+....

Therefore

8y V X I .'Ix^ /

oa: 1.2

provided that Sa; is so small that

X

* The fact that we have an infinite aeries on the right hand sometimes causes

diflBculty to the student, as he imagines that what he calls the summing of the

nfinite number of small terms involving 5a;, (Sa;)^, etc. ... may give rise to a

finite sura. The answer to this difficulty in general is to be found in a true view

of the meaning of a convergent infinite series, but in the series here referred to

we are able to say what the possible error can be if we stop after a certain

number of terms. We thus exclude the infinite series from our argument.
C.C. I
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Hence Lt
Sx-

and the differential coefficient of «" is wf^'K

'.o\8xJ

II. To differentiate e*.

Let y = e"".

Then y-^^y = e^+*''-

.-. hy^e^+^^-e'^

= e^(e««- 1)

6^(1+^ +^+.. .-1

&x V 2!^ 3!
*

)

Proceeding to the limit, j^
= «*•

Thus
|^(«')

= a'.

III. To differentiate logx.

Let y = log a^.

Then y + ^y = log (« + 8x).

Therefore 8y = log (x + Sic)
-
log x

=iog(i.;)
8a; l/8a;\2 I/Sa^V -t <1.

8« X 2x\ X

Proceeding to the limit, -/ = -." dx X

Thus -i(loga;)
= -.

a; 2a;V^/ ^x\x)
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CHAPTER I. (p. 15)

1. (1.) a;2 + 2/2= -2— ^"-^ *'"4a"

(iii.) a;-' +2xV + 2/^ + 2a2(2/2_a:2) + a.4-c^=rO.

2. .T + 42/-ll = 0. 3.

(-If, jl).

4, The parallel lines through O are

Sx-2y= 0, 4x + y = 0, 19a^+13y= 0.

The perpendicular lines through are

2x + 37/
= 0, x-^y= 0, 13a;- 19^ = 0.

The parallels through (2, 2) are

3x-2y= 2, ^x + y = lO, I9x+13y = 64.

The perpendiculars through (2, 2) are

2x + 3y=l0, x-4ty + Q = 0, I3x-I9y + 12= 0.

6. x + 3y-1 = 0.

6. Ix+ly - 36 = is the bisector of the acute angle.

x-y -12 = is the bisector of the obtuse angle.

7. (i.) (1,2), (3,4), (5,3). (ii.)
|,

-3.
^.

(iii.) The internal bisectors are

x-y+l-x + 4y-7 x-y+l _ -a;-2y + ll x- 4y + 7 _ x + 2y- 11

~vi"~ ^n
'

n/2

~
n/5

'

x/n
~

\/5

*

The external bisectors are

x-y+l_ x-4:y + 7 x-y+l _ x + 2y -II x-^y + 7 _ -a;-2y + ll
^

v/2 /v/r7

'

\/2

~
>/5

'

\/r7

~
\/5

8. If the points (0, 0), (2, 4), (
-

6, 8) be called A, B, C respectively,

(i.) BCis a; +2y-10= 0, (ii.) tanA = 2, tanB = oo, tanC^^*CA is 4x + 3y= 0,

ABis 2x-y=0.
C.C. I 2
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(iii.) Median through A is y + Sx= 0,

Median through B is y - 4 = 0,

Median through C is 6^:; + 7y
- 20= 0.

(iv.) The perpendicular from A on BC is the line AB ; its length is

2v/5.

The perpendicular from B on CA is the line Sx-4y + ll=0 ;
its

length is 4.

The perpendicular from C on AB is the line CB ;
its length is

4\^.
4

(v.) x + 2i/
= 0, (vi.)x=-K' 2/

= 4.

4a: + 32^ -20= 0,
"^

2a; -y + 20=0.

^'"'
[ 3 + x/5

'

3 + N/5 )'
^ ' ^'

I 2'*;

9. ^1(^2 -y3) + a^2(.y3-2/i)+a:3(2^i- 2/2)- l®. (i.) 6. (ii.) 40.

CHAPTER II. (p. 29)

4. y-9a:+16 = 0. 5. x= -i y =^:x
= l, y= -\.

6. n-gi ;
-

g. 7. 27rrA 5r.

8. 5V= 4Tr25r, 50-27, 502-66. 9. (a + 2bt), 5l = {a + 2bt)5t.

12. —— feet per second.
v/3

CHAPTER III. tp. 43)

J dy^ 3(x-l)g(x+l) c^y^
g-a;

^^
2x^

^^ sf2ax-x-

dx 2s/{x+l){x + 2)

(iv.) ^= (x + a)^-^(a! + /))''-i{(p + (/)a; + <7a+^6,}.

Va^ - a*

... 3X2 l_a;2
(XI.) .. (Xll.)

-.

(l-a;2)^ (l+a;+ x2)^(l-a; + a;2)^

^.
(ii.) -^0. (iii.) :f%

Va yo a'^
(i.) ?^.

(ii.) _^o. (iii.) q3^_!^_0. (iv.) -Va.
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4. 7*96 miles per hour. 5. 8 miles per hour ; 4 miles per hour.

8. ^^^ -yii.
dv V

9. When the pressure decreases, the volume increases, and conversely.

CHAPTER IV. (p. 59)

1. (i.) 3sina;cosa;(sinir-eosa;). (ii. ) sec'*;i;. (iii.) ,-•cos%

(iv.) "1?^^. (V.) _2^?-^ . (vi.) 'l^^-^ .

sin^x ( 1
- sin x)^ { 1 + cos x)"^

3. (i.) a;*"-^[msin(.T«) + «a;"cos(a;")].

(ii. ) a;"*~^ [w cos (a;")
- nx"^ sin (a;")].

(iii. ) 07"'-^ [m tan (ar") + ?ix" sec^ (a;'*)].

4, (i.) 2a;tan-ia;. (ii.) sin-^a;. (iii.)

2'slx(\ + x)
1 _ /J.2 Y

^^^"^ r+3^T^* ^^'^
2(i + a:2)"

5. aw sin w<, aw^ cos a><.

6. a;= 2awcos2-^; y=:awsinw^. x= -aw^sinw^; i/
= au^coab}t.

The direction of motion at time t makes an angle ,y
with the axis of x.

CHAPTER V. (p. 78)

1. (i.) e*(l+a;). (ii.)'a;"^-ie"^(w + ?ia;). (iii.) (a + hc + cax)e''''+<^.

(iv.) e^'''""'^|sin-i.T+ ,.J=^V
V sfl-xV

2. (i.) 2a;ei+^'. (ii.) 2xe«^'(l+ax2). (jji) a;'«-ie«^"(m + ?iaa:»).

(iv.) a;"*~%*'*(m + 7ia;"loga).

3. (i.)a."^-Ml+mlog.). (ii.)

(,^(,^2)
- ^"^"^

2;/in-

(iv) —r6^_. (V.) ^^^!±i±^. (vi.)
1

.
^

Nl-a;2)(4-a:2)
'

Xs/^^r:^! (1-^Wx

4. (i.),^
^^-^

. (ii.)—^. (iii.) I"^^
2v'(2a;+l)(a;-2)'

'

(a2±a;2)f a:=*(a;-l)**

/• \ _vr/i 1 \ / \ m?icos(m-»i)a;sin"~^wa7
(iv.) ar*(l+log.r). v.) ^

' —

11. (i.) tana. (ii.) t&nnd. (iii.) -cotyt^. (iv.) cot«^. (v.) -tan?i^.

r^- is the tangent of the angle between the radius vector to the
dr

point (r, ^), and the tangent to the curve at that point.



134 ANSWERS

13.
{i.)^l

= (Sx-l){x-l). Max. at
Q, 1^1

Min. at (1, 0).

(ii. ) -^
=x{5x-2){x-lf. Max. at origin.

Mill, at (-4, -03).

(iii.) ^= 2(a;-l)(a;-2)(2a;-3). Min. at (1, 0); (2. 0).

Max. at
(I ^.

^'""-^^x^^-^^-
Max. at (-1, -1).

"^•^ ^
Min. at (1,3).

(V.) ^=2j^P^\.,. Max. at (
-

1, 3).
dx (ar + x+lr / ]

Min. at/
1,^^

ax (x+x + i) Min. at (1-4, --06) nearly.

^^"•^ fx=
-
(T\'yHr2r

^^- ^' ^
- ^' "^^^ "'^^^^^•ax (X i)(x Z) Max. at (1-4, 18-2) nearly.

"

/ .... dy 2{x'-6x+ 1) XT ^-
• -4.

(ix.) ^^^^I^^+^Q. Max. at (I'o, -1) nearly.dx (x-4) Min. at (6-45, 9-9) nearly.

(x. ) ^^ ^"^-

~
^. Min. at ( 1 -26, 1 -89) nearly.dx x"^

n.. ,
R^ ... . R /••• \ r.

^^
».

. (i. --2- 11. -•
111.) Sp=-^dv.

(iv.) 5y=— 5^. V.) 5«= - ^

„
—-dv +— 5^.

p
V ' ^

^2 ^

19. — =— + T-+cotC5C.A a

EXAMPLES ON THE PARABOLA, (p. 83)

2. Foci,

Vertices, -

Latera recta, -

Lengths,
- - -

1,

Axes, - - - x= -2,

Tangents at vertices, y=:
-

1,

(-
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3. -5. 7. 5. (1, 2),
fa2a\
\m^ 111)

6. a;-y-l=0, a;+ 2/-3= 0. 7. x-y + a= 0, x + 2/-3a = 0.

a; + 2/ + a = 0, x- - y - 3a = 0.

EXAMPLES ON THE ELLIPSE, (p. 87)

1. The foci, extremities of the axis, length of latus rectum, and eccen-

tricity are for

(i.) [±1,0], [±2,0], [9±x/3], 3, \

ii.)[2,2], [0,2], [3,2], [-1,2], [l,2 + x/3], [1,2-V3], 3,
,^-

(iii.) [±v^3, 1], [±2,1], [0,2], [0,0], \ -|-

(iv.) [0, ±1], [0, ±2],[±s/3,0], 3,^-

EXAMPLES ON THE HYPERBOLA, (p. 90)

1. (i.) (±^^7,0);(±2,0);3;^•

(ii.) (1±V7,2);(3,2);(-1,2);3;-^-

(iii. ) (0,
- 1 ± v^5) ; (0, 0) ; (0,

-
2) ;

8 ; \/o.

,- ,- 4\/3' \/2l
(iv.) (±x/7,0);(±v/3,0);-3-;^-

2. (i.) (±2x/2, ±2\/2); (±2, ±2). (ii.) (±2\/2, t2\/2); (±2, ^2).

CHAPTER VII. (p. 104)

1. (i.) ~^^-; ;
3\/a;(3

+ a;); a;-log(a; + 3).

(ii.) log T> log^;^ rV'
^^—H-^±-7-tan-M —i^- '

^ ^x-\ ^{x-\) 2 ^3 \ x/3 /

3 2 2 ^^ '

x/3 V x/3

(iii. )
sin-i {2x - 1

) ; 2'Jx^-^x + 2 + 2 log f a; -
1
+ \/a;2 ^"^^+

2^)
;

^{x^ + x+\) + ^\oglx + :^
+ slW+xV\\.

x^ 11
2. x^\n-'^x + sll-x^; -^tan~^a;-pa;2 + ^log(l + a:2) ;

o o b

,
/l-8x2\ . ,

X
cos 4a; (

—
^2
—

)
+ sni 4a; •

^ ;

/9x2-2\ .
.,

2a; ^ a;"*+i a;"*^! ^, , ,
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, 1, / (l+a;)2 \ 1 ,2a;-l . Ill, fx+\\

8. log tan 2
•

log tan
-
^-

•

-^ log tan
(^
^
+

1 /-s s 7^, 1, 2secx--l
-
log (a tan ^ + Va^ tan^^ + ¥). ^ log 2^^^i

'

11. / ^-
—

i
= tan-i tan

j.
.

/ ^
—

^
= k tan-^ I 3 tan -

j5 + 4cosa: 3 \3 2/ ./5-4cosx 3 \ 2/

f
dx ^Ij

^ +
^^"1 /• tZx ^1^^

^ + ^^^"1

J4 + 5cosa;

3°^3_^^^|'
j4-5cosx

3"gj_3^^^^|

,- /a; TT

;- _dx ^2j
^g +

tonj^g-j^
J2 + 3Bi„:.

'^5"'''^/5-tan(|-^)

1 - \/5 tan
r dx ^ 2

^^
^"""-""(I'i)

J2-3sina; ^ "^"~T /x ttV
l+VotanI 2~4 )

,« 1 o. . . 2 . , cos^^sin^ 3 ^ • ^ 3^
12.

^
cos^^ sin +

^
sin ^. j + - cos ^ sin ^ +

^
^.

... a;" . n , w(w- 1) r « <> 7

15. — sin mx + —s x"-^ cos wa; 5— /
a;"--^ cos wa: dx.

CHAPTER VIII. (p. 126)

1. (i.) 1.
(il)^fe-^+l\ (iii.) aMog^^.

(iv.) 64. (V.)
3(^2^-1).

2. - : the difference between the area bounded by the a:-axis, the y-axis
6
and the curve, and the area which lies on the negative side of the

a;-axi8.

« 343
^'

12'
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*• <^-)
-3

-• ^"-^ ^' 12-' IrT-

(iii.) !:^', '^«', '[?^. (iv.) aMog^^^.^ '

8
'

12' 471
^ ^

^tan^i

/ \ *''f -1 *^(t'*ii^2~ tan^i) a6 1 (& + « tan d^) {b -a tan g^)
IV.)

— an
-^2tan^jtan^2+l>2' T ^^{b + atai\d^b-ata.ne^)'

6. (i.) a8eca(e-'''°^"-l). (»•)
|((27rVT+472)

+ iog(2,r + v/r+47r2)).

(iii.)|(e-e-i).

7. (i.)
g.

(11.) 487r. (ill.)
— -.

(iv.) -7r/iV. (v.) 2a62,r2. (vi.) -irabc.
5 3

11. (i. )
~l from that end.
o

(ii.) On the radius bisecting the arc at a distance from the

centre.

'""37r'

,... ,
- 46 _ 4a

(ill.) x= , y

(iv.) On the radius bisecting the sector at a distance _ ?HL^ from

the centre.

(v.) On the bisector of the chord at a distance -a ^^^ "•
from

^, ^ 3 a - sin a cos a
the centre.

(vi. ) The middle point of the radius perpendicular to the base.

12. (i.) lM^2.(rodof length2/). (ii.) iMa^. (iii.) iMa^.
3 JL Jd

(iv.) f (a'^ + in-
(v.)^Ma=.

(vi. ) (a)
'^'5' :

(,3) M
(?^-^|

(vii.) (a) M^: (m M^: (y) M^'^).

(viii.,
M(-±£?).

(ix.,
M(-|.-).
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